Institute for Systems Research
Permanent URI for this communityhttp://hdl.handle.net/1903/4375
Browse
Search Results
Item The Case of the Missing Pitch Templates: How Harmonic Templates Emerge in the Early Auditory System(1999) Shamma, Shihab; Klein, David J.; ISRPeriodicity pitch is the most salient and important of all pitch percepts.Psycho-acoustical models of this percept have long postulated the existenceof internalized harmonic templates against which incoming resolved spectracan be compared, and pitch determined according to the best matchingtemplates cite{goldstein:pitch}.However, it has been a mystery where andhow such harmonic templates can come about. Here we present a biologicallyplausible model for how such templates can form in the early stages of theauditory system. The model demonstrates that {it any} broadband stimulussuch as noise or random click trains, suffices for generating thetemplates, and that there is no need for any delay-lines, oscillators, orother neural temporal structures.
The model consists of two key stages:cochlear filtering followed by coincidence detection. The cochlear stageprovides responses analogous to those seen on the auditory-nerve andcochlear nucleus. Specifically, it performs moderately sharp frequencyanalysis via a filter-bank with tonotopically ordered center frequencies(CFs); the rectified and phase-locked filter responses are further enhancedtemporally to resemble the synchronized responses of cells in the cochlearnucleus.
The second stage is a matrix of coincidence detectors thatcompute the average pair-wise instantaneous correlation (or product)between responses from all CFs across the channels. Model simulations showthat for any broadband stimulus, high coincidences occur between cochlearchannels that are exactly harmonic distances apart. Accumulatingcoincidences over time results in the formation of harmonic templates forall fundamental frequencies in the phase-locking frequency range.
Themodel explains the critical role played by three subtle but importantfactors in cochlear function: the nonlinear transformations following thefiltering stage; the rapid phase-shifts of the traveling wave near itsresonance; and the spectral resolution of the cochlear filters. Finally, wediscuss the physiological correlates and location of such a process and itsresulting templates.
Item Scalable Coding of Video Objects(1998) Haridasan, Radhakrishan; Baras, John S.; Baras, John S.; ISR; CSHCNThis paper provides a methodology to encode video objects in a scalable manner with regard to both content and quality. Content scalability and quality scalability have been identified as required features in order to support video coding across different environments. Following the object-based approach to coding video, we extend our previous work on motion-based segmentation by using a time recursive approach to segmenting image sequences and decomposing a video "shot" into its constituent objects. Our formulation of the segmentation problem enables us to design a codec in which the information (shape, texture and motion) pertaining to each video object is encoded independently of the other. The multiresolution wavelet decomposition used in encoding texture information is shown to be helpful in providing spatial scalability. Our codec design is also shown to be temporally scalable. This report was accepted for oral presentation at the IEEE International Symposium on Circuits & Systems, Monterey, Calif., May-June 1998.Item Closed-Loop Monitoring Systems for Detecting Incipient Instability(1998) Kim, Taihyun; Abed, Eyad H.; ISRMonitoring systems are proposed for the detection of incipientinstability in uncertain nonlinear systems. The work employsgeneric features associated with the response to noise inputsof systems bordering on instability. These features, called "noisy precursors" in the work of Wiesenfeld, also yield information onthe type of bifurcation that would be associated with thepredicted instability. The closed-loop monitoring systems proposedin the paper have several advantages over simple open-loop monitoring.The advantages include the ability to influence the frequencies atwhich the noisy precursors are observed, and the ability tosimultaneously monitor and control the system.Item Combined Compression and Classification with Learning Vector Quantization(1998) Baras, John S.; Dey, Subhrakanti; ISRCombined compression and classification problems are becoming increasinglyimportant in many applications with large amounts of sensory data andlarge sets of classes. These applications range from aided target recognition(ATR), to medicaldiagnosis, to speech recognition, to fault detection and identificationin manufacturing systems. In this paper, we develop and analyze a learningvector quantization-based (LVQ) algorithm for the combined compressionand classification problem. We show convergence of the algorithm usingtechniques from stochastic approximation, namely, the ODE method. Weillustrate the performance of our algorithm with some examples.Item Architecture, Design, Simulation and Performance Evaluation for Implementing ALAX -- The ATM LAN Access Switch Integrating the IEEE 1355 Serial Bus(1997) Charleston, Giles C.; Makowski, A.; ISR; CSHCNIEEE 1355 is a serial bus standard for Heterogeneous Inter Connect (HIC) developed for "enabling high-performance, scalable, modular and parallel systems to be built with low system integration cost." However to date, few systems have been built around this standard specification. In this thesis, we propose ALAX -- an internetworking switching device based on IEEE 1355. The aim of the thesis is two-fold. First, we discuss and summarize research works leading to the architecture, design and simulation development for ALAX; we synthesize and analyze relevant data collected from the simulation experiments of the 4- port model of ALAX (i.e., 4-by-4 with four input and output queues) -- these activities were conducted during the 2-year length of the project. Secondly, we expand the original 4-by-4 size of the ALAX simulation model into 8-, 12- and 16-port models and present and interpret the outcomes. Thus, overall we establish a performance assessment of the ALAX switch, and also identify several critical design measurements to support the ALAX prototype implementation. We review progresses made in Local Area Networks (LANs) where traditional software-enabled bridges or routers are being replaced in many instances by hardware-enabled switches to enhance network performance. Within that context, ATM (Asynchronous Transfer Mode) technology emerges as an alternative for the next generation of high-speed LANs. Hence, ALAX incarnates our effective approach to build an ATM-LAN interface using a suitable switching platform. ALAX currently provides the capability to conveniently interconnect legacy Ethernet and ATM- based networks. Its distributed architecture features a multi- processor environment of T9000 transputers with parallel processing capability, a 32-by-32 way non-blocking crossbar fabric (C104 chipset) partitioned into Transport (i.e., Data) and Control planes, and many other modules interlaced with IEEE 1355- based connectors. It also employs existing and emerging protocols such as LANE (LAN Emulation), IEEE 802.3 and SNMP (Simple Network Management Protocol). We provide the component breakdown of the ALAX simulation model based on Optimized Network Engineering Tools (OPNET). The critical parameters for the study are acceptable processor speeds and queuing sizes of shared memory buffer at each switch port. The performance metric used is the end-to-end packet delay. Finally, we end the thesis with conclusive recommendations pertaining to performance and design measurement, and a brief summary of areas for further research study.Item Joint Optimal Power Control and Beamforming in Wireless Networks Using Antenna Arrays(1997) Rashid-Farrokhi, F.; Tassiulas, L.; Liu, K.J. Ray; ISR; CSHCNThe interference reduction capability of antenna arrays and the power control algorithms have been considered separately as means to increase the capacity in wireless communication networks. The MVDR (Minimum Variance Distortionless Responses) beamformer maximizes the Carrier to Interference Ratio (CIR) when it is employed in the receiver of a wireless link. In a system with omnidirectional antennas, power control algorithms are used to maximize CIR as well. In this paper we consider a system with beamforming capabilities in the receiver, and power control. an iterative algorithm is proposed to jointly update the transmission powers and the beamformer weights so that the coverage to the jointly optimal beamforming and transmission power vector. The algorithm is distributed and uses only local interference measurements. In an uplink transmission scenario it is shown how base assignment can be incorporated in addition to beamforming and power control such that a globally optimum solution is obtained. the network capacity increase and the saving in mobile power achieved by beamforming are evaluated through numerical study.Item Accurate Segmentation and Estimation of Parametric Motion Fields for Object-based Video Coding using Mean Field Theory(1997) Haridasan, Radhakrishan; Baras, John S.; ISR; CSHCNWe formulate the problem of decomposing a scene into its constituent objects as one of partitioning the current frame into objects comprising it. The motion parameter is modeled as a nonrandom but unknown quantity and the problem is posed as one of Maximum Likelihood (ML) estimation. The MRF potentials which characterize the underlying segmentation field are defined in a way that the spatio-temporal segmentation is constrained by the static image segmentation of the current frame. To compute the motion parameter vector and the segmentation simultaneously we use the Expectation Maximization (EM) algorithm. The E-step of the EM algorithm, which computes the conditional expectation of the segmentation field, now reflects interdependencies more accurately because of neighborhood interactions. We take recourse to Mean Field theory to compute the expected value of the conditional MRF. Robust M-estimation methods are used in the M- step. To allow for motions of large magnitudes image frames are represented at various scales and the EM procedure is embedded in a hierarchical coarse-to-fine framework. Our formulation results in a highly parallel algorithm that computes robust and accurate segmentations as well as motion vectors for use in low bit rate video coding.This report has been submitted as a paper to the SPIE conference on Visual Communications and Image Processing - VCIP98 to be held in San Jose, California on Jan 24- 30, 1998. Item Wavelet Coding of Images: Adaptation, Scalability, and Transmission over Wireless Channels(1997) Jafarkhani, Hamid; Farvardin, N.; ISRIn this dissertation, we study the problem of image compression for storage and transmission applications separately. In addition to proposing new image coding systems, we consider different design constraints such as complexity and scalability.We propose a new classification scheme, dubbed spectral classification, which uses the spectral characteristics of the image blocks to classify them into one of a finite number of classes. The spectral classifier is used in adaptive image coding based on the discrete wavelet transform and shown to outperform gain-based classifiers while requiring a lower computational complexity. The resulting image coding system provides one of the best available rate-distortion performances in the literature. Also, we introduce a family of multiresolution image coding systems with different constraints on the complexity. For the class of rate-scalable image coding systems, we address the problem of progressive transmission and propose a method for fast reconstruction of a subband-decomposed progressively transmitted image.
Another important problem studied in this dissertation is the transmission of images over noisy channels, especially for the wireless channels in which the characteristics of the channel is time-varying. We propose an adaptive rate allocation scheme to optimally choose the rates of the source coder and channel coder pair in a tandem source-channel coding framework. Also, we suggest two adaptive coding systems for quantization and transmission over a finite-state channel using a combined source and channel coding scheme. Finally, we develop simple table- lookup encoders to reduce the complexity of channel-optimized quantizers while providing a slightly inferior performance. We propose the use of lookup tables for transcoding in heterogeneous networks
Item An Integrated Rapid Prototyping and Vacuum Casting System for Medical Applications(1997) Surana, Rena; ISREvaluation of products in the design stage has played a critical role in product development. Methods to build functional prototypes have been a deciding factor for designverification. As an emerging technology, rapid prototyping is revolutionizingthe process of building prototypes. However, material limitations and highcosts call for further expansion of this technology focusing on batch productionof prototypes with material options.Recognizing the challenge to produce multiple prototypes, this thesisresearch aims to integrate three state-of-the-art technologies: 3D solid modeling, rapid prototyping, and vacuum casting. A system architecture combining hardwareand computer software is designed and implemented.
The system utilizes computergraphics to construct a 3D model of an object through visualitzion. A softwaresystem, Maestro, processes a CAD file, generates support structures, and creates slice data to build prototypes by a stereolithography process. Thebuilt part serves as a master pattern for creation of a silicone rubber mold in a vacuum environment. This vacuum environment creates a material flow ratethat ensures replicas with superior quality in regards to surface finish anddimensional accuracy. This mold is then used to cast multiple replicas ofthe master pattern.
The unique contribution of this research is the application of thedeveloped system to meet a specific need in medical research - an effort torestore sight in blind individuals by implanting electordes in the visualcortex. Six replcas of a monkey skull are produced for surgeions to practicesurgical procedures. Image data obtained from CT scans of a mondkey head are successfully used to contruct a 3D solid model to fabricate a batch of six functional prototypes. The superior quality of these replicas hasoffered a unique opportunity for exploratory surgery in efforts to restoresight.
Item Commodity Trading Using Neural Networks: Models for the Gold Market(1997) Brauner, Erik; Dayhoff, Judith E.; Sun, Xiaoyun; ISREssential to building a good financial forecasting model is having a realistic trading model to evaluate forecasting performance. Using gold trading as a platform for testing we present a profit based model which we use to evaluate a number of different approaches to forecasting. Using novel training techniques we show that neural network forecasting systems are capable of generating returns for above those of classical regression models.