Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Computational Fluid Dynamic Solutions of Optimized Heat Shields Designed for Earth Entry

    Thumbnail
    View/Open
    Meeroff_umd_0117N_11325.pdf (4.409Mb)
    No. of downloads: 1092

    Date
    2010
    Author
    Meeroff, Jamie Gabriel
    Advisor
    Lewis, Mark J
    Metadata
    Show full item record
    Abstract
    Computational fluid dynamic solutions are obtained for heat shields optimized aerothermodynamically using Newtonian impact theory. Aerodynamically, the low-order approach matches computational simulations within 10%. Benchmark Apollo 4 solutions show that predicted heat fluxes under-predict convective heating by 30% and over-predict radiative heating by 16% compared to computational results. Parametric studies display a power law reliance of convective heat flux on edge radius. A slender heat shield optimized for a single design point produces heat fluxes 1.8 times what was predicted using the Newtonian approach. Here, maximum heating decreases with the inverse cube of the base sharpness. Coupled vehicle/trajectory optimized designs are examined for lunar return (11 km/s) and Mars return (12.5 km/s) and show possible discrepancies for eccentric shapes using low-order empirical correlations. Ultimately, gains suggested by the low-order approach using complex geometries are not reflected in high-fidelity simulations. In some respects, the simpler shape is the ideal one
    URI
    http://hdl.handle.net/1903/10466
    Collections
    • Aerospace Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility