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Computational fluid dynamic solutions are obtained for heat shields opti-

mized for aerothermodynamic performance using modified Newtonian impact the-

ory. Aerodynamically, the low-order approach matches all computational simula-

tions within 10%. Benchmark Apollo 4 solutions, at the moment of maximum

heating, show that predicted heat fluxes using this approach under-predict convec-

tive heat flux by approximately 30% and over-predict radiative heat flux by ap-

proximately 16% when compared to computational results. Parametric edge radius

studies display a power law reliance of convective heat flux on local edge radius of

curvature. A slender, oblate heat shield optimized for a single design point is shown

to produce heat fluxes that are 1.8 times what was predicted using the Newtonian

approach. For this design, maximum heat flux decreases with the inverse cube of the

base cross section sharpness. Uncoupled radiative heat flux results based on CFD

solutions for a slender heat shield show that the lower-order approach under-predicts



the heating from the radiating shock layer by 70%, suggesting the infeasibility of

empirical relations used to predict radiative heat flux for eccentric blunt-body heat

shields. Coupled vehicle/trajectory optimized designs are examined for both lu-

nar return (11 km/s) and Mars return (12.5 km/s) and show possible discrepancies

for eccentric cross sections using low-order semi-empirical correlations. Ultimately,

gains suggested by the lower order approach using more complex geometries are not

reflected in these high-fidelity simulations. In some respects (especially with regards

to the heating environment), the simpler shape (i.e. a 25◦ spherical segment) is the

ideal one.
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Chapter 1

Introduction

1.1 Motivation

A key aspect in mankind’s exploration of space has been the safe delivery

of human beings or sensitive equipment to the surface of a planetary body. In

order to complete this objective, a vehicle must endure intense aerothermodynamic

loads on its forward surfaces that must be absorbed or dissipated using a thermal

protection system. Since Allen and Eggers showed the benefits of using a blunt

body to defray the adverse heat loads of entry in the 1950’s,1 all NASA missions

involving atmospheric penetration have employed some manner of axisymmetric,

blunt heat shield. The manned capsule missions of the 1960’s and early 1970’s

(Mercury, Gemini, and Apollo) all employed a spherical segment, ablating heat

shield while the Martian Viking and Pathfinder missions both used a slightly more

complex spherically blunted cone geometry to deliver their hardware to the surface

of the Red planet. While these designs have served well in their various missions, the

improved ability to handle heat loads often comes at the price of poor aerodynamic

performance, particularly in regards to L/D (which correlates to less flexibility and

safety in landing). There is considerable utility in an optimized shape, neither

necessarily axisymmetric nor entirely blunt, that balances thermodynamic loads

with aerodynamic performance in an ideal fashion.
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To that end, previous work at the University of Maryland introduced a single

design point optimization2 using modified Newtonian impact theory to add newer

shapes, such as those with elliptical and polygonal base cross sections, to the design

space for entry vehicles. Generally, higher L/D ratios are generated by employing

a parallelogram cross section with more of a nosecone-like axial profile. Coupling

trajectory analysis allowed the optimizer to explore time dependent characteristics

such as heat load, cross range, and deceleration loads for an entire entry profile.

Optimized vehicle and trajectory pairs have been generated using this method for

both Lunar return3,4 (11 km/s) and Mars return4,5 (12.5 km/s) mission profiles.

The present work uses computational fluid dynamic solutions in order to test

the underlying assumptions of the optimization process as well as to explore regions

of the flow field not necessarily covered by the simple surface inclination methods

employed in their original derivation. This is done to provide a more robust analysis

of the conclusions in the works by Johnson.2–6 The effect of changing the shoulder

radius and edge sharpness of optimized geometries on the resulting aerothermo-

dynamics is detailed. Slender, rounded polygons and other unconventional shapes

generated for earth entry at extra-orbital speeds are examined in order to produce

a clearer picture of the hypersonic aerothermodynamic environment experienced by

these vehicles, and to determine if the boundaries of the current design space are

valid or need to be altered. Preliminary uncoupled radiation solutions are also ex-

plored for select shapes to understand better the full heating profile of these types of

geometries. Ultimately, the scope of this work will be to enhance the understanding

of the design space for a lower-order optimization method using higher fidelity com-

2



putational fluid dynamics, so that more viable results can be generated in future

studies.

1.2 Previous Work

The goal of this work is to analyze the merits of particular heat shield design

optimized for certain favorable aerothermodynamic characteristics, not to add to

the design space for re-entry vehicles. As such, this section will not delve into the

history of blunt body entry, but rather provide a general overview of the process

of Johnson, et al.2–6 in which optimized blunt body geometries were developed for

certain design parameters. For a more detailed discussion as to what motivated the

particular choices that make up the optimization model please see Refs. [5] and

[6]. The aforementioned optimization procedure involves four main aspects: (1)

choosing a geometry, (2) determining the aerodynamics, (3) calculating the heating

profile, and (4) finding the optimum balance of (1)-(3).

1.2.1 Heat Shield Geometries

The heat shield shapes examined in this study were defined by Johnson, et

al.2 and are formed by sweeping an axial profile (one of three different geometric

patterns) around the axis of an elliptical base cross section. The coordinate system

used in this work is shown in Figure 1.1. Where φ is the rotation angle of the cross

section and ω is a sweep angle for the axial profile.

3



Figure 1.1: Fixed-body coordinate system shown on a 60◦axisymmetric spherical

segment heat shield

1.2.1.1 Base Cross Section

The base is controlled by Gielis’ superformula of the superellipse7 with 0 ≤

φ ≤ 2π shown as:

r(φ) =

[∣∣∣∣cos(1
4
m1φ)

ν1

∣∣∣∣n2

+

∣∣∣∣sin(1
4
m1φ)

ν2

∣∣∣∣n3]−1/n1

(1.1)

This equation has the ability to produce a wide range of eccentric concave

or convex with round or sharp edges solely by varying the individual parameters.

Here, the m1 parameter corresponds to the number of sides of the superellipse. All

cases studied in this work use a value of m1 = 4, as it has been shown that this

particular value produces geometries with the highest L/D.2 For this value of m1,

the n1 modifier must be set to 1 to form viable designs. In order to produce closed

shapes, be they sharp or round edged, both ν1 and ν2 must also be set to unity

4



and n3 must equal n2. The n2 parameter controls the concavity and edge sharpness

of the base. When n2 = 2 the base is an ellipse (regardless of the value of m1 or

n1). The base is convex when n2 < 2 and concave when n2 > 2. Since convex heat

shields may be infeasible to efficiently implement, this work only considers shapes

with n2 ≤ 2. A sample of the range of shapes Eq. 1.1 is able to create by varying

n2 is shown in Figure 1.2.

Figure 1.2: Range of shapes produced by Eq. 1.1, from ref [5]

Traditional definitions of eccentricity do not apply here as ν1 = ν2 = 1. Still,

“eccentric” shapes can be generated by defining a new set of semimajor and semimi-

nor axes based on an input eccentricity parameter, e, as shown in the following

equations:

a2 =


b2(1− e2)

1
2 −1 < e < 0

1 0 ≤ e < 1

(1.2)

b2 =


1 −1 < e < 0

a2(1− e2)
1
2 0 ≤ e < 1

(1.3)

Here e is fixed between -1 and 1, and prolate and oblate shapes are produced when

e > 0 and e < 0 respectively. By using these new values of semimajor and semiminor

5



axes to scale the Cartesian components of a proportioned (to a desired reference

radius) version of the superformula of the superellipse, a wide range of elliptic,

rounded edge bases may be produced as shown in Figure 1.3.

(a) n2 = 2.0, e = .75 (b) n2 = 1.5, e = −.75

Figure 1.3: Example of oblate and prolate bases

1.2.1.2 Axial Profiles

The heat shield axial profile was defined by Johnson4,6 as the portion of the

vehicle that protrudes from the base. Three different axial shapes were used to

generate the geometries in the optimizer design space: (1) a spherical segment, (2)

a spherically blunted cone, and (3) a power law. Once chosen, axial profiles are then

swept about the contour of the base cross section to construct the full 3-D geometry.

Since the base of the heat shield is not axisymmetric, the axial profiles need to be

scaled to the local radius of the base at a given particular sweep angle. Thus the

axial profiles can only be described as the shapes below at φ = 0. More generally,

the axial shape at a given rotation angle is a scaled version of the three classes of

profiles presented in this section.
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The spherical segment was defined as the section of sphere encompassed by

a spherical segment angle θs in which a plane parallel to the yz-plane divides the

sphere. The Apollo Command Module employed a spherical segment as its heat

shield, with θs = 25◦. A spherically blunted cone was, simply, a cone with its tip

replaced by a spherical nose. This profile was defined by the cone angle (θc) and

by the ratio of nose radius to base diameter (rn/d).An axisymmetric spherically

blunted cone heat shield was used by the NASA Viking spacecraft to safely traverse

the Martian atmosphere. Finally, the power law axial profile was defined by the

equation:

y = Axb (1.4)

Where the A parameter provides a measure of bluntness for the shape while the

b parameter transforms the shape from a sharp cone (b = 0.01) to a flat surface

(b = 1.0). Figure 1.4 shows examples of these three kinds of axial profile. It should

be noted, however, that in this work, no heat shields with an axial profile of a power

law are explored, as optimized designs with that profile mimicked designs that used

the other axial profiles.
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(a) Spherical Segment (b) Power Law (A = 1, b = 0.6)

(c) Blunted Cone (rn/d = 0.3, θc = 35◦)

Figure 1.4: Axial Shapes
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1.2.2 Aerodynamic Model

The aerodynamic characteristics of a certain design were calculated based on a

modified Newtonian surface pressure distribution. Figure 1.5 shows the conventions

for α (angle of attack) and β (sideslip angle) used for all aerodynamic calculations.

Figure 1.5: Freestream coordinate system for α and β

Newtonian theory assumes that component of a particles momentum normal

to a surface is destroyed when impinging upon that surface, while its tangential

momentum is conserved.8–10 The pressure coefficient, in Newtonian theory, is given

as:

Cp =


Cp,max

(
~V∞·n̂
~V∞

)2
~V∞ · n̂ < 0

0 ~V∞ · n̂ ≥ 0

(1.5)

where ~V∞ · n̂ ≥ 0 holds in vehicle’s shadow region, meaning that the normal com-

ponent of velocity is either nonexistent or moving away from the body. Applying

Equation 1.5 locally, you get (for any point (x, y, z) on the body):

Cp = Cp,max(Vxnx + Vyny + Vznz)
2 (1.6)
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where Vx, Vy, Vz and nx, ny, nz are the components of the free stream velocity and

local normal vector respectively. In simple Newtonian theory, it is assumed that

Cp,max = 2, whereas modified Newtonian theory uses the Rayleigh pitot tube for-

mula11 which relates stagnation pressure after a shock to the freestream pressure

as:

p0,2
p∞

=

(
1− γ + 2γM2

∞
γ + 1

)(
(γ + 1)2M2

∞
4γM2

∞ − 2(γ − 1)

)γ/γ−1
(1.7)

This equation, when normalizing by dynamic pressure (q∞), yields:

Cp,max =
2

γM2
∞

(
p0,2
p∞
− 1

)
(1.8)

Integrating Equation 1.6 times a local area element (dA) and a component of the

body normal vector(nx, ny, nz) over the surface using Simpson’s rule and then di-

viding by the total planform area (Ap) provides the non dimensional normal, axial,

and side forces (CN , CA, CY ). These generalized coefficients can be related to lift

and drag by:

CL,V = CN cos(α)− CA sin(α) (1.9)

CL,H = CY cos(β)− CA cos(α)sin(β) (1.10)

CL =
√

(CL,V )2 + (CL,H)2 (1.11)

CD = CN sin(α) + CY sin(β) + CA cos(wv) (1.12)

Where wv is the wind angle defined as:

wv = arctan

(√
(Vy)2 + (Vz)2

Vx

)
(1.13)
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In this work, analysis is done on heat shields at design points predicted to

deliver peak instantaneous heating. At these locations on a particular trajectory,

the vehicle is traveling at such high velocities that it can reasonably be assumed

that:

vx, vy >>> vz (1.14)

Equation 1.14 essentially means that, in general, β = 0◦, or that there is no sideslip.

With this condition and the x-y plane symmetry of the geometries (true in this

work, because m = 4), the side force, or CY will also be equal to 0. As such, lift

and drag now become:

CL = CL,V = CN cos(α)− CA sin(α) (1.15)

CD = CN sin(α) + CA cos(α) (1.16)

A similar process was used to generate aerodynamic moment coefficients for

pitching, rolling, and yawing; but, since stability analysis is not performed in this

work, those equations are not included here.

1.2.3 Heating Models

The strength and shape of a local bow shock strongly affects the resulting heat

transfer delivered to a blunt body in a hypersonic flow. Since conduction through a

shock layer is negligible, only convective and radiative heat transfer at the stagnation

point were considered in developing the heating model for the optimization process.

Convective heat flux is related to a velocity gradient imposed by the body’s surface

pressure distribution, while radiative heat flux is controlled by the thickness of the
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resulting bow shock layer. The instantaneous heat flux is defined as a power density

in the form of heat per unit area (W/cm2) and can be integrated along a trajectory, if

one exists, to determine a heat load. Though the presence of dissociated and ionized

air in a hypersonic shock layer will cause some coupling between these two modes

of heat transfer, the heat transfer model employed neglects any coupling effects. It

should also be noted here that for all altitude dependent free stream quantities, the

1976 Standard Atmosphere12 was used.

1.2.3.1 Convection

Convective heat transfer at a point is related to the gradients of velocity around

that point, which are, in turn, controlled by the pressure distribution. As shown in

section 1.2.2, the local pressure distribution is a function of the geometry of body

in the flow. More specifically, a smaller local radius of curvature will generate larger

velocity gradients and, thus, a greater amount of heating.13

To account for stagnation point convective heat flux, the model of Tauber and

Menees14 was used. The most general form of this model is:

qs,conv = (1.83x10−8)r−0.5n (1− gw)ρ0.5∞ V
3
∞ (1.17)

Where gw is the ratio of wall enthalpy to total enthalpy (assumed zero here) and rn is

the local nose radius (obvious for a spherical segment or a spherically blunted cone,

but some manipulation was needed to derive an effective nose radius for power law

geometries). This correlation assumes equilibrium flow conditions and a fully cat-

alytic surface, which, in theory, produced more conservative heat flux predictions.8
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This relationship also follows the Fay and Riddell15 formulation which purports that

stagnation point heat flux is proportional to the inverse square root of the local nose

radius.

1.2.3.2 Radiation

Radiative heat flux is controlled by three primary factors: (1) nose radius (rn),

(2) shock stand off distance (the farther away from the body the shock is, the larger

the radiative heat transfer will be),13 and (3) angle of attack (α). These parameters

were combined to form an effective nose radius upon which to apply the following

semi-empirical radiative heat transfer relations. For a sphere at V∞ < 9000 m/s the

correlation for radiative heat transfer is:

qs,rad = reffg1(3.28084x10−4V∞)g2
(
ρ∞
ρsl

)g3
(1.18)

Where g1 = 372.6, g2 = 8.5, and g3 = 1.6 for V∞ < 7620 m/s8 and g1 = 25.34,

g2 = 12.5, and g3 = 1.78 for 7620 m/s< V∞ < 9000 m/s.16 For a sphere at

V∞ ≥ 9000 m/s, the following relation from Tauber and Sutton17 were applied:

qs,rad = 4.376x104rHeffρ
1.22
∞ f(V∞) (1.19)

where H = 1.072x106V −1.88∞ ρ−0.325∞
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where the value for f(V∞) was taken from curve fits from tabulated values17 as:

f(V∞) =



−3.93206793x10−12V 4
∞ + 1.61370008x10−7V 3

∞

−2.43598601x10−3V 2
∞ + 16.1078691V∞

−39494.8753 9000m/s ≤ V∞ ≤ 11500 m/s

1.00233100x10−12V 4
∞ + 4.89774670x10−8V 3

∞

−8.42982517x10−4V 2
∞ + 6.255525796V∞

−17168.3333 11500m/s ≤ V∞ ≤ 16000 m/s

(1.20)

Since the above relations are for spheres and the optimized geometries can be

other shapes, the effective nose radius in these equations needed to be related back

to the actual nose radius. To find this radius, first, the shock strength (ρ2/ρ1) was

calculated using the method of Tannehill,18 which employs empirical curve fits for

the specific heat ratio (γ) behind the shock . Then, the semi-empirical method of

Kaattari19,20 was employed to determine the physical shock stand-off distance (∆so).

In this method, shock stand off distance is related to the curvature of the shock by

the follow equation:

∆so

rsh
=

√
1 + 4G

(
rsh
rn

)
− 1

2
(
rsh
rn

) (1.21)

Where G is determined by curve fits of a function of (ρ2/ρ1) and γ. The ratio of rn

to rsh was found by manipulating a combination of further empirical curve fits and

the geometry of the blunt body itself, thus allowing ∆so to be backed out. Finally,
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the empirical curve fit of Reid21 was applied as shown:

∆so

reff
=

 (ρ2
ρ1
− 1)2

ρ2
ρ1
−
√

2ρ2
ρ1
− 1
− 1

 (1.22)

This equation defined an effective radius, which essentially relates any shape to an

equivalent sphere, that was used to solve Equations 1.18 and 1.19.

In this thesis, analysis is done at trajectory points where peak instantaneous

heating is predicted to occur. At super-orbital entry velocities, peak heating will

often occur at V∞ > 9000m/s; therefore, radiation results in this study can only

directly be related to values determined from Equation 1.19, the Tauber and Sutton

model.

1.2.4 Optimization Methods

This section will briefly delineate the blunt-body optimization procedures de-

veloped by Johnson, et al.2–6 by introducing the fundamentals behind the optimiza-

tion methods, exploring the objective functions and constraints used, displaying

sample geometries, and by discussing the conclusions drawn from these the results

for the two separate approaches used to find ideal shapes. For a robust description

of the approaches, see Refs. [5] and [6].

1.2.4.1 Single Design Point Optimization

Initially, Johnson sought to derive optimum blunt body heat shield geome-

tries using a gradient based algorithim2,6 at a single design trajectory point, Apollo

4 peak heating (h = 61 km and M∞ = 32.8) . Optimizations were done using
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Vanderplaats Research & Development, Inc.’s DOT software,22 which enacted the

modified method of feasible directions (MMFD) to minimize or maximize specific

objective functions subject to specific inequality constraints and vehicle design side

constraints. MMFD works by, first, choosing an initial feasible design, ~X1. Then, a

new (in this case, second) search direction, E2, is formulated from the gradient of

the objective function and constraints. A one dimensional search is then conducted

to find a scalar, a∗ that will minimize the particular objective function in question.

The scalar is multiplied by the direction and added to the previous vector of design

variables to generate a new ~X of design variables. This procedure continues until

convergence and the Kuhn-Tucker conditions22 are satisfied.

Objective functions used were maximizing LV /D, maximizing (LV /D)/qs,tot,

minimizing qs,tot, and minimizing Cm,cg,α. Optimizations were performed on each

objective function for all three different choices of axial profile. The geometric side

constraints used are shown in Table 1.1. Most notably, the n2 parameter has a

lower bound of 1.3, which is meant to prevent the generation of shapes with sharp

leading edges. The optimization also used inequality constraints for stability and

heat flux to prevent certain optimizations from producing entirely infeasible shapes.

For example, when optimizing for LV /D, these constraints ensured that stagnation

heat flux would not exceed 3000 W/cm2.

Figures 1.6 and 1.7 are examples of optimized shapes using this method. Gen-

erally, this process showed that high L/D can be achieved by four-sided, rounded

edge polynomial cross sections and that it was indeed possible to generate shapes

with high lift to drag ratios while keeping peak stagnation point heating below 1000
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W/cm2, less than what was required for NASA’s most recent space capsule design

(Orion). Still, the design space used in this study often contained a number of local

optima, and optimizations were only performed at a single design point; as such,

there was no way to determine what vehicle truly represented the ideal.

Table 1.1: Design variables and side constraints used in gradient based optimization

Spherical segment Spherically blunted cone Power law

55.0◦ ≤ θc ≤ 89◦

5.0◦ ≤ θs ≤ 89.0◦ 0.15 ≤ rn/d ≤ 2.00 0.900 ≤ A ≤ 10.000
1.3 ≤ n2 ≤ 4.00 1.3 ≤ n2 ≤ 4.00 1.3 ≤ n2 ≤ 4.00
−0.968 ≤ e ≤ 0.968 −0.968 ≤ e ≤ 0.968 −0.968 ≤ e ≤ 0.968
−30◦ ≤ α ≤ 30◦ −30◦ ≤ α ≤ 30◦ −30◦ ≤ α ≤ 30◦

Figure 1.6: Spherical Segment with n2 = 1.30, e = −.0968, θs = 89.0◦, and α = 18◦

optimized for maximum (Lv/D)/qs,tot

Figure 1.7: Spherical Segment with n2 = 4.00, e = .0968, θs = 15.9◦, and α = −12◦

optimized for minimum qs,tot
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1.2.4.2 Coupled Vehicle/Trajectory Optimization

In order to generate more robust optimal solutions, a coupled vehicle/trajectory

analysis was performed.3–5 Generating trajectories allowed for the calculation of

time dependent parameters such as heat load and downrange distance. These tra-

jectories were optimized using the University of Maryland, College Park Trajectory

Optimization Program(UPTOP),23 which employs a 4th-order Runge-Kutta rou-

tine to propagate the three-degrees-of-freedom point mass equations of rigid-body

motion give as:23–25

d~p

dt
= ~V (1.23)

d~V

dt
=
B

m
~Fb + ~g (1.24)

d ~ωb
dt

= (J−1ΩbJ) ~ωb + J−1 ~Tb (1.25)

dm

dt
= −

(
dm

dt

)
fl

(1.26)

d~qt
dt

= −1

2
Ωq~qt (1.27)

where ρ, V , and g are given in an inertial reference frame and ω, body rotation rate,

is specified in a vehicle coordinate system. UPTOP uses a differential evolutionary

scheme (DES)26 to find an ideal solution, where designs, as in nature,27 are evolved

through generations based on mutation and cross-over factors until an optimum is

found. UPTOP compared favorably to the Program to Optimize Simulated Tra-

jectories (POST),28 NASA’s primary trajectory optimization code, for an optimal

Space Shuttle ascent trajectory through main engine cutoff.4 Multiple objective

functions were used to find a set of non-dominated solutions, or a Pareto frontier,
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to a given problem. Figure 1.8 shows an example of a Pareto frontier in which

heat load (Qs,tot) is minimized and downrange (pdwn) is maximized concurrently.

Essentially, the Pareto frontier is set of solutions in which one design may be better

than another with respect to one of the objective functions, but not all of them.27

The optimal solution lies on this Pareto frontier and balances all desired objective

functions in an ideal fashion

Figure 1.8: Pareto frontier example for a spherical segment (L/D = 0.5, VE = 12.5

km/s)

Optimizations were performed at both lunar return (VE = 11 km/s) and Mars

return (VE = 12.5 km/s) using two multi-objective functions sets: (1) maximizing

cross range pxrs (to provide for more abort scenarios) while minimizing stagnation

point heat load Qs,tot (so that heat shield mass can be reduced) and (2) maximizing

down range pdwn while minimizing stagnation point heat load Qs,tot. Trajectories
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were limited to six bank angle (φb) changes for L/D = 0.3 and 0.5 and ten changes

for L/D = 1.0. Trajectories had to also be chosen to possess robust entry corridors,

allowable regions of entry flight path angle γE, in order to provide for suitable off-

design survivability of individual designs. Finally, lower and upper mass constraints

were set in order to bracket all possible blunt-body solutions.

Table 1.2 shows the geometric side constraints used for this particular opti-

mization process. It should be noted that for lunar return, only spherical segment

geometries were considered while both spherical segments and spherically-blunted

cones were examined for Mars return. The other axial profiles were not used because

optimization using those shapes produced designs that mimicked other geometries,

thus not introducing new heat shields, but rather reproducing already generated

ones. Another notable feature of these geometric constraints is that the n2 sharp-

ness parameter is bounded below by 1.3, which allows for rounded parallelogram

cross sections, and above by 2.0, which prevents any concave shapes from being

introduced.

Furthermore, Table 1.3 shows the trajectory and aerodynamic constraints

used. The constraints allowed for sensible trajectories and for general aerodynamic

stability. Mach number and altitude final conditions are based on suitable values

for parachute deployment, and deceleration loads (nmax) were limited to values less

than what was experienced on Apollo 10 (7g).29,30

Figures 1.9 and 1.10 show examples of vehicles and corresponding trajectories

optimized using this approach for both lunar and Mars return respectively. Gen-

erally, it was found that shapes with a larger drag area, specifically CDS (drag
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Table 1.2: Design variable constraints used in vehicle/trajectory optimization

L/D VE = 11.0 km/s L/D
specific design variables

VE = 12.5 km/s L/D
specific design variables

5.0◦≤θs≤ 89◦, L/D=0.3
20.0◦≤θs≤ 89◦, L/D=0.5

5.0◦≤θs≤ 89.0◦ 55.0◦≤θc≤ 89.0◦

0.3, 0.5 −0.968≤e≤ 0.968 0.15≤rn/d≤ 2.0
−30◦≤ α≤30◦ −0.968≤e≤ 0.968

−30◦≤ α≤30◦

50.0◦≤θs≤ 89◦ 50.0◦≤θs≤ 89◦

1.0 −0.968≤e≤ −0.95 −0.968≤e≤ −0.95
0◦≤ α≤30◦ 0◦≤ α≤30◦

Common design variables

0.27≤L/D≤0.33
1.3≤n2≤2.00 0.47≤L/D≤0.53

0.95≤L/D≤0.1.05
5s≤ t1≤55s

t1+10s≤ t2≤ t1+55s 0◦≤φb,all≤180◦

t2+10s≤ t3≤ t2+55 For L/D = 0.3&0.5
t3+10s≤ t4≤ t3+55s all = 0, 1, 2, · · · , 5, 6
t4+10s≤ t5≤ t1+3605s For L/D = 1.0
t5+10s≤ t4≤ t1+3605s all = 0, 1, 2, · · · , 9, 10

Table 1.3: Trajectory/aerodynamic constraints vehicle/trajectory optimization

Optimization constraints
Trajectory Aerodynamic/Geometric

M∞,f =2
tf≤3600s Cm,cg,α≤ −0.001
nmax≤5g Cn,cg,β≥0.001
ht≤1220km sign(CL,V )Cl,cg,β≤0.01

10km≤ht,f≤45km |α|≤|ε+1◦|
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coefficient times reference area), can decelerate at a higher altitude, in a less dense

part of the atmosphere, and thus produce the lowest heat loads. Also increases in

mass were shown to correlate as an almost linear increase to heat load. For lunar

return, dramatic improvements in heat loads and cross range over the Orion CEV

design at L/D = 0.27 were shown by using 5◦ spherical segment with a highly oblate

cross section (e = −.0968) due mostly to higher drag area and L/D.
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(a) Geometry (b) Trajectory

Figure 1.9: Spherical segment with θs = 75.7◦, n2 = 1.31, and e = −0.967 optimized

for Lunar Return (VE = 11km/s)

(a) Geometry (b) Trajectory

Figure 1.10: Spherical segment with θs = 23.7◦, n2 = 1.66, and e = 0.621 optimized

for Lunar Return (VE = 12.5 km/s)
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1.3 Objectives and Contributions

The aim of this thesis is to analyze the merit of the aforementioned models

to truly attain an optimum blunt body heat shield solution. A high fidelity CFD

package, DPLR, is employed to explore these optimized heat shield designs in full

detail. The ability of stagnation point relations and semi-empirical correlations to

fully predict the volatile environment of planetary re-entry are probed in order to

see how well they stand up when the full flow physics is considered. Ultimately, this

work aspires to find areas of possible improvement of the above optimization model,

weather it be in the constraints and equations themselves, or by illuminating areas

of the flow-field not covered by the lower-order approach (i.e. off stagnation point

heating). As CFD can be especially costly, especially in high temperature environ-

ment like re-entry, certain parts of the lower-order model, such as the trajectory

integrated variables of heat load and downrange, could not be analyzed with the

higher order simulation. Still, the results presented here provide invaluable detail

to the design space of a lower-order heat shield optimization process.

Some important results of this thesis include: (1) that the low-order optimiza-

tion approach does produce reasonable initial results for blunt-body aerothermo-

dynamics (especially in regards to the aerodynamic coefficients), (2) that high off

stagnation point convective heating in parallelogram base designs implies the need

to further constrain the n2 parameter to something higher than 1.3, (3) that the

semi-empirical relation used to predict convective and radiative heat transfer break

down when used on more eccentric shapes rather than just spheres, and (4) that,
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when practical matters are considered, a simple axisymmetrical spherical segment

blunt body heat shield provides near optimal performance for both lunar and Mars

return without the need to manufacture exotic shapes. These results come out of

extensive benchmarking of the computational tools (Chapter 2) using the Apollo

capsule at Apollo 4 peak heating conditions as a test subject (Chapter 3). A ge-

ometry from the single point optimization procedure2,6 is then examined (Chapter

4) parametrically to fully understand the effects of changing certain geometric pa-

rameters. Chapter 5 looks at optimized shapes for lunar3,4 and Mars4,5 return, and

explore how these designs hold up in a fully realized flow. Finally, Chapter 6 con-

tains gathers all important conclusions in full detail and provides a summary of this

work’s important contributions to the state of the art.
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Chapter 2

Computational Tools

This chapter provides an overview of the various computational resources em-

ployed to simulate blunt body re-entry flows. Only pre-existing software was used;

however, modifications were necessary, especially to ensure that the flow solver would

properly function on the specific hardware found at the University of Maryland,

College Park. Essentially, a blunt-body CFD run involves taking the geometric pa-

rameters from the optimizer (as described in Chapter 1), creating a volume mesh

from those parameters, converging a hypersonic solution using the CFD flow solver,

post-processing to examine the results, and then, finally, calculating the thermal

effects due to shock layer radiation (if necessary). This general work-flow pattern is

shown in Figure 2.1. The dotted line connecting DPLR, the flow solver, to NEQAIR,

the radiation solver, signifies that, though radiation and convection are considered

uncoupled in this work, there is a process by which the two heating regimes can

be loosely coupled. The individual components used in this work (in the rectangles

outside the dotted box) are described in the following sections.
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2.1 Flow Solver

The high temperature environment of re-entry is modeled using the Data Par-

allel Line Relaxation (DPLR) code31 developed at NASA Ames Research Center.

DPLR is a Fortran 90 structured multiblock hypersonic continuum code that utilizes

the Message Passage Interface (MPI) to spread its workload over multiple computer

processors. DPLR was chosen because of its ability to accurately and efficiently

model blunt body re-entry at orbital32 and extra-orbital velocities,33 and because it

was far better suited to the hardware found at the University of Maryland, College

Park than other hypersonic continuum solvers, like LAURA.34,35 Both DPLR V3.05

and V4.0 are used in this work. There is backwards compatibility between the two

versions as no changes were made to the parts of the flow solver used in this work

during the upgrade.

2.1.1 Nonequilibrium Flow Model

The flow is modeled in DPLR using the chemically reacting conservation equa-

tions equations (derived assuming continuum flow and that translational tempera-

ture T , vibrational temperature TV , and electron temperature Te are all different)

shown in general form as:36,37

a) Species Continuity

∂ρsp
∂t

=
∂

∂xj
(ρspu

j
o + ρspV

j
sp) = ẇsp (2.1)

where sp is an individual species, xj is jth component of the orthogonal

coordinate directions, ẇsp is the mass production rate of a species sp per
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unit volume, ρsp is the mass density of species sp, ujo is the jth component

of mass averaged velocity, and V j
sp is the jth component of the species

mean velocity.

b) Overall Continuity

∂ρ

∂t
+

∂

∂xj
(ρujo) = 0 (2.2)

where ρ is the sum of the individual species densities.

c) ith Direction Species Momentum Conservation

∂

∂t
(ρspu

i
sp) +

∂

∂xj
(ρspu

i
ou

j
o) +

∂

∂xj
(ρspu

i
oV

j
sp + ρspu

j
oV

i
sp)

+
∂psp
∂xi
−
∂τ ijsp
∂xj

= F i
elastic,sp + F i

electric,sp (2.3)

where τ i,j is the shear stress, Felectric is the electric force (a function

of electric field), and Felastic is the force generated by elastic collisions

between molecules (from kinetic theory).

d) ith Direction Overall Momentum Conservation

∂

∂t
(ρuio) +

∂

∂xj
(ρspu

i
ou

j
o) +

∂p

∂xi
− ∂τ ij

∂xj
=
∑
sp

F i
elastic,sp (2.4)

where τ i,j, p, and Felastic are now summed over all species.

e) Electron (denoted by e subscript) Energy Conservation

∂

∂t

[
ρe

(
1

2
u2o + uioV

i
e + ee

)]
+

∂

∂xj

[
ρeu

j
o

(
1

2
u2o + ee

)]
+
∂qje
xj

+
∂

∂xj

(
1

2
ρeu

2
oV

j
e + ρeu

j
ou

i
oV

i
e

)
+

∂

∂xi
(uiope)

− ∂

∂xj
(uioτ

i,j
e ) = Pelectric,sp +Qelastic,sp +Qinelastic,sp (2.5)
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where ee is the energy per unit mass of an electron, Pelectric is a power

supplied by an electric field on charged particles, Qelastic is the rate of

energy due to elastic collisions, and Qinelastic is the energy change due to

inelastic collisions (including radiation).

f) Species Vibrational Energy Conservation

∂

∂t
(ρspeV,sp) +

∂

∂xj
(ρspeV,spu

j
o) =

∂

∂xj

(
n′V,sp

∂TV
∂xj

)
− ∂

∂xj
(ρspeV,spV

j
sp) + ρsp

e∗V,sp(T )− eV,sp
τT−V,sp

+ ρsp
e∗∗v,sp(Te)− eV,sp

τe−V,sp
(2.6)

where eV,sp is the vibrational energy for a species sp, n′V,sp is the thermal

conductivity for vibrational energy, τT−V,sp and τe−V,sp are the T-V and

e-V relaxation times for a species sp respectively, and e∗V,sp and e∗∗V,sp are

the equilibrium vibrational energy of species sp at T and Te respectively.

g) Overall Energy Conservation

∂

∂t

[
ρ

(
1

2
u2o + e

)]
+

∂

∂xj

[
ρeu

j
o

(
1

2
u2o + e

)]
+
∂qj

xj
+

∂

∂xi
(uiop)−

∂

∂xj
(uioτ

i,j) = Pelectric +Qrad (2.7)

where e is the total thermodynamic energy per unit mass, qj is the jth

component of the overall heat-flux vector, and Qrad is the radiation loss.

The above equations are further simplified, by choosing the appropriate sim-

plifications within DPLR itself. Due to the high velocities experienced upon Lunar

and Mars return, an 11 species (N2, O2, NO, NO+, O2+, N, O, N+, O+, e), 19

reaction finite rate chemistry model for air from Park38 is considered in order to
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capture the effects of ionization caused by thermal and chemical nonequilibrium

expected after the bow shock. The flow is assumed to be in thermal nonequilibrium

using the two-temperature model of Park39 which uses an averaged temperature,

defined as:

Td =
√
TTV (2.8)

to control dissociation rates. Ionization reactions are governed by bulk translational

temperature, T , as in the work by Olynick et al.,40 and translational and vibrational

energy modes are modeled by a Landau-Teller formulation, which uses relaxation

times from Milikan and White.41 Viscous transport and thermal conductivity are

modeled using the mixing rules of Gupta et al.,42 while species diffusion coefficients

are calculated using the self-consistent effective binary diffusion (SCEBD) method

of Ramshaw.43 Only the three dimensional laminar versions of the governing equa-

tions are considered in this work, which is a reasonable assumption for blunt-bodies

entering Earth’s atmosphere. Since many different materials exist for use in thermal

protection, a super-catalytic boundary condition is used for the heat shield surface.

A super-catalytic surface assumes that the chemical composition of the body is iden-

tical to that in the freestream, resulting in conservative heating estimates useful for

design studies. Consequently, this also means that material response is neglected,

as no specific surface material is chosen. The heat-shield surface is also assumed to

be in radiative equilibrium, in which energy incident to the surface is radiated back

into the freestream based on the equation:

qw = εσT 4
w (2.9)
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where ε is the surface emissivity (a constant 0.85 in this work) and σ is the Stefan-

Boltzmann constant. This model provides accurate heating predictions, especially

for the non-ablating heat-shields explored in this work. Various other boundary con-

ditions, such as periodic or symmetric, can be employed at other mesh boundaries,

but the flow at surfaces through which air exits must be supersonic. Due to limi-

tations in the DPLR software, shock layer radiation is neglected in the flow solver;

however, uncoupled contributions to the total surface heat flux from the radiating

shock layer are calculated, in some cases, with the NEQAIR software package (see

Section 2.3).

2.1.2 Numerical Model

DPLR is a fully three-dimensional implicit, upwind Navier Stokes solver that

takes into account the physical models discussed above. Euler fluxes are computed

using a modified form of Steger-Warming flux vector splitting method developed by

MacCormack and Candler,44 which has less dissipation than the original scheme.

Third order spatial accuracy is maintained by a MUSCL (Monotone Upstream-

centered Schemes for Conservation Laws) extrapolation with a minmod limiter.45

A central differencing approach is used to ensure second order accuracy of the

viscous fluxes. Time-marching is achieved with the data-parallel line relaxation

method(DPLR),31 which gives the flow solver its name. The DPLR method is es-

sentially a modified version of McCormack’s Gauss-Seidel line relaxation(GSLR)46

in that it uses line relaxation steps instead of Gauss-Seidel sweeps for more efficient
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parallelization.

The best way to illustrate how the DPLR method works is by applying it to

the two-dimensional fully implicit inviscid form of the Navier Stokes equations,31

defined as:

Un+1 − Un

∆t
+
∂F n+1

∂ξ
+
∂Gn+1

∂η
= 0 (2.10)

where n is a time step, U is the vector of conserved quantities, and F and G are the

flux vectors in the body normal (ξ) and body tangential (η) directions. The fluxes

can be linearized by:

F n+1 ≈ F n +

(
∂F

∂U

)n
(Un+1 − Un = F n + AnδUn)

Gn+1 ≈ Gn +

(
∂G

∂U

)n
(Un+1 − Un = Gn +BnδUn) (2.11)

where A and B are the Jacobian matrices of the flux vectors. The fluxes are now

split based on the sign of the eigenvalues of the Jacobian matrix as:

F+ + F− = A+U + A−U = F

G+ +G− = B+U +B−U = G (2.12)

which allows Equation 2.10 to written in an upwind finite volume form as:

δUn
i,j + (∆t/Vi,j)[(A+i+ 1

2
,jSi+ 1

2
,jδUi,j − A+i− 1

2
,jSi− 1

2
,jδUi−1,j)

−(A−i− 1
2
,jSi− 1

2
,jδUi,j − A−i+ 1

2
,jSi+ 1

2
,jδUi−1,j)

+(B+i+ 1
2
,jSi+ 1

2
,jδUi,j −B+i− 1

2
,jSi− 1

2
,jδUi−1,j)

−(B−i− 1
2
,jSi− 1

2
,jδUi,j −B−i+ 1

2
,jSi+ 1

2
,jδUi−1,j) = ∆tRn

i,j (2.13)

where Rn
i,j is the solution change due to fluxes at time n, Si,j is the surface area of

face i, j, and Vi,j is the cell volume. The DPLR method is formed by, first, moving
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the body normal terms in Equation 2.13 to one side, resulting in:

B̂i,jδUi,j+1 + Âi,jδUi,j − Ĉi,jδUi,j−1 = −D̂i,jδUi+1,j + Êi,jδUi−1,j + ∆tRn
i,j (2.14)

where the hatted matrices are defined as:

Âi,j = I + (∆t/Vi,j)(A+i+ 1
2
,jSi+ 1

2
,j − A−i− 1

2
,jSi− 1

2
,j +B+i+ 1

2
,jSi+ 1

2
,j −B−i− 1

2
,jSi− 1

2
,j)

B̂i,j = (∆t/Vi,j)(B−i+ 1
2
,jSi+ 1

2
,j)

Ĉi,j = (∆t/Vi,j)(B+i− 1
2
,jSi− 1

2
,j)

D̂i,j = (∆t/Vi,j)(A−i+ 1
2
,jSi+ 1

2
,j)

Êi,j = (∆t/Vi,j)(A+i− 1
2
,jSi− 1

2
,j) (2.15)

Then, the kmax line relaxation steps are applied, by first solving a block tridiagonal

system, formed by neglecting the implicit terms in 2.14, for δU
(0)
i,j as:

B̂i,jδU
(0)
i,j+1 + Ŝi,jδU

(0)
i,j − Ĉi,jδU

(0)
i,j−1 = ∆tRn

i,j (2.16)

then, for k = 1 : kmax:

B̂i,jδU
(k)
i,j+1 + Ŝi,jδU

(k)
i,j − Ĉi,jδU

(k)
i,j−1 = −D̂i,jδU

(k−1)
i+1,j + Êi,jδU

(k−1)
i−1,j + ∆tRn

i,j

δUn
i,j = Ukmax

i,j (2.17)

Essentially, this method requires one LU substitution (for solving Equation 2.16)

and kmax + 1 back substitutions for a single iteration in time. The hatted matrices

only need to be calculated once for each relaxation sweep, and each relaxation step

can be done in parallel if body normal information is stored locally.
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In the DPLR software itself, the above method is applied to the fully viscous

three-dimensional Navier-Stokes equations, which makes the equations slightly more

complicated; but, the fundamentals behind the method are the same. Convergence,

in DPLR, comes when the L2 norm of a conserved variable (in this work, total density

ρ is used) reaches a sufficiently low level, which essentially means the solution is not

changing between time steps and has reached a quasi-steady state. DPLR has the

ability to simulate an unsteady flow, but since the heat shields studied in this work

are examined at specific trajectory points, this feature is not used.

2.1.3 Work-flow

A typical DPLR simulation for a given blunt-body heat shield case is given as

follows. First, a Plot3D volume grid is read into the software using a built in pre-

processing package, called fconvert. This package converts the mesh into something

that DPLR can understand while also breaking it down into smaller blocks. The

size and number of these blocks are chosen by the user to divide the computation

as evenly and as efficiently as possible over the available computational nodes to

ensure rapid convergence. Essentially, whichever node has the most amount of work

assigned to it will dictate the convergence time of a given run. Once the grid is

sufficiently divided, DPLR itself is invoked, using options supplied in an input file,

which contains a CFL number schedule to control the time steps of the simulation.

A first run of DPLR will often be run on an un-adapted mesh using a simpler

gas model (i.e. one with 5 species instead of 11) in order to quickly generate a
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baseline solution. Once this initial solution is converged, the mesh is smoothed

using the built-in adaption techniques of Saunders,47 which reshapes a volume grid

based on Mach number contours. Then, the more complicated gas model is applied,

and DPLR is run a few more times (usually four or five) to convergence, adapting

the grid before each run. Once the solution has reached a quasi-steady state, it

is considered converged (see previous section). Finally, a built-in post-processor,

called Postflow is used to extract the pertinent flow characteristics on any part of

the volume mesh for view in any graphical interpreter, such as Tecplot. Postflow also

has the ability to integrate flow variables over surfaces, which is useful in generating

non-dimensional aerodynamic coefficients for lift and drag (as long as the proper

reference quantities are defined).

2.1.4 Code Modifications and Validation

DPLR was written primarily for use on the Columbia supercomputing cluster

at NASA Ames Research Center; as such, it was necessary to alter the software’s

source code for proper function on a cluster at University of Maryland, College

Park (more detail on both clusters can be found in Section 2.4). The changes, while

not trivial, amount mostly to differences in semantics used by various Fortran 90

compilers. That being said, validation cases were run using the modified version of

DPLR (the changes were identical for both DPLR version 3.05 and DPLR version

4.0) using a series of sample files distributed with the DPLR software package. Table

2.1 shows the different compiler/architecture sets used in this validation study.
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All sample cases generated the exact same results for all the compilers/architectures

used. For example, figures 2.2 and 2.3 show Mach contours on the symmetry plane

for the Mars Science Laboratory(MSL) and surface skin friction coefficients for a

2-D cylinder respectively. Essentially, these results suggest that no errors were in-

troduced into the code by the modifications made to the source.

Table 2.1: Compilers and architectures used in DPLR validation study

Compiler MPI Package Platform Cluster Name

Pathscale48 Open MPI49 AMD 64 bit Skystreak (UMD)
Intel Fortan50 Open MPI Intel 32 bit Columbia
Gnu-Fortan51 Open MPI Intel 32 bit -

Portland Group Fortan52 LAM/MPI53 AMD 64 bit -
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2.2 Grid Generation

Topologies are created using the commercially available elliptic grid generation

package, Pointwise.54 This package is an upgrade to the commonly used Gridgen55

software in the sense that it has a more streamlined graphic user interface (GUI)

and enhanced undo capabilities. The later feature is especially useful, since grid

generation will often devolve into a trial-and-error procedure where multiple meshes

are created until one “looks” right A good “looking” mesh will often have orthogo-

nality near its the boundaries and have no adverse stretching in its cells). Pointwise

can create both structured and unstructured meshes, but only structured grids can

be input to DPLR. Once a surface grid is created, Pointwise can improve the quality

of the mesh by using different control functions (Laplace, Middlecoff-Thomas,56 and

Steger-Sorenson57) to iteratively solve Poisson’s elliptical partial differential equa-

tions given, in the computational domain, by:58

αxξξ − 2βxξη + γηη = −J2(Pxξ +Qxη)

αyξξ − 2βyξη + γηη = −J2(Pyξ +Qyη) (2.18)

with:

α = x2η + y2η β = xξxη + yξyη γ = x2ξ + y2ξ

where (x, y) are the Cartesian coordinates of the mesh, (ξ, η) are the transformed

mesh points in the computational domain, J is the Jacobian of the transformation

from Cartesian to computational domain (J = xηyξ−xξyη), and P and Q are source

terms that provide control over internal mesh spacing. Pointwise also employs vari-
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ous methods of hyperbolic extrusion in order to generate smooth three dimensional

volume meshes. Simple normal extrusion is often sufficient for generating three-

dimensional blunt-body topologies.

2.2.1 Work-flow

The process for creating a blunt-body mesh for an optimized heat shield is

as follows. First, a Matlab script is used to generate the two profiles (axial and

base cross-section) defined in Section 1.2.1 based on the geometric parameters given

by the optimizer. These profiles are fed into a computer aided drafting (CAD)

software package, called Rhino.59 Here, the axial profile is rail revolved around

the base cross section to create the full three-dimensional surface. This surface is

exported in “.iges” format to be read into Pointwise as a database. This database is

crucial as it allows for grid elements to be resized without losing important geometric

information. A surface grid is created using this database as a reference, and it is

sized and broken down into blocks depending on the needs of the given problem.

Once the surface grid is completed, the elliptical solver is run to a desired smoothness

using whatever control functions provide the best solution for the given geometry.

Finally, a volume is extruded from the surface hyperbolically, with user prescribed

boundary conditions and spacing, to form the grid to be exported to DPLR (in

Plot3D format).
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2.2.2 DPLR-specific Grid Generation Concerns

There are certain known issues that need to be carefully considered when craft-

ing a blunt-body topology in order to prevent spurious results in DPLR. First, a

geometry created by simply sweeping an axial profile around the central axis of a

base cross section will produce a singularity at the nose of the resulting vehicle. This

singularity may introduce unwanted errors into DPLR (a finite volume solver) as

cells extruded from that point will have vanishing volume. In order to remove this

singularity, all grids are patched elliptically in the nose region as shown in Figure 2.4.

Also, in order to prevent poor shock capturing, all grids use finer spacing in highly

curved areas (i.e. shoulder regions) as shown in figure 2.5. Finally, DPLR requires

a sufficiently small body normal spacing near the wall in order for the hypersonic

boundary layer to be captured. To this end, all meshes have 80 body normal points

with a near wall spacing of 1.0 x 10−6 m.
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Figure 2.4: Nose patching as shown on the Apollo heat-shield

Figure 2.5: Edge spacing for the Apollo heat-shield
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2.3 Shock Layer Radiation Solver

As DPLR lacks a method for internally calculating shock layer radiation, an

external code is used to calculate the influence of the radiating flow field on a given

a blunt-body. In this work, the Nonequilibrium Air Radiation (NEQAIR)60 code

is used. Radiation is only calculated in an uncoupled sense, in that results from

NEQAIR are not fed back into DPLR. Essentially, radiation is calculated using

only the fully developed solution from DPLR, which is equivalent to applying an

optically thin assumption, in that no radiation is absorbed by the shock layer itself.

It is possible to loosely couple these two software packages, via the radiation term in

the conservation of energy equations as in the work by Pace61 for axisymmetric test

cases. This procedure involves iteratively creating new radiation solutions based on

DPLR solutions updated with NEQAIR data. Full three dimensional cases using

this approach can be incredibly costly; and, since the work of Johnson presents

radiation and convection in an uncoupled sense, it is reasonable, for the sake of an

apples-to-apples comparison, to do the same here.

2.3.1 Radiation Model

NEQAIR works by solving the radiative transport equation (RTE), given by:38

dI

ds
= ε− k′I (2.19)

where I is a radiative intensity, ε and k′ are emission and absorption coefficients

respectively, and s is path known as a line-of-sight. To compute these coefficients,

NEQAIR uses spontaneous emission, absorption, and stimulated emissions due to
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changes in energy states computed along a line-of-sight for every chemical species

present. Bound-free and free-free radiation is also considered.60 To determine the

electronic state distribution, the quasi-steady state method of Park38 is used, which

considers electron impact excitation, de-excitation, and recombination in forming

a model for the population. The solution of the radiative transport equation is

vastly simplified, within NEQAIR, by applying the tangent-slab approximation.

This model essentially makes the problem one-dimensional by assuming the radiating

shock layer to be an infinitely long slab of radiating gas parallel to the body at a

specified point. As such, emission and absorption can be neglected in the body

parallel direction, leaving only the body normal (line of sight) direction upon which

to integrate the intensities in the RTE. This model produces heating estimates that

are 5-15% greater that what would be predicted by models that include surface

curvature,62 with the advantage of significant cost savings.

2.3.2 Work-flow

A NEQAIR solution is generated as follows. First, species concentrations and

temperatures are extracted for the final volume mesh of a converged blunt-body so-

lution using the built in post-processor in DPLR. Then lines-of-sight, discretized to

a set number points, are created linearly from surface nodes to the outer boundary

of the volume grid. Thermodynamic properties are interpolated from the converged

DPLR solution onto corresponding points along these lines-of-sight. Example lines-

of-sight are shown in Figure 2.6, generated for the Apollo heat shield. Here, 2,667
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lines of sight are needed to cover the part of the vehicle’s surface needed for the

simulation (symmetry dictates that only half of the heat shield is needed). Finally,

NEQAIR is run to integrate the transport equation, along each line of sight, to

calculate the radiative heat flux at the originating surface node point due to ra-

diative phenomena. For example, the topology in Figure 2.6 needs 2,667 separate

invocations of NEQAIR to form a complete solution.

Figure 2.6: Lines-of-sight for an Apollo heat-shied
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2.4 Hardware

The above computational tools, namely DPLR and NEQAIR, need a super-

computing environment in which to conduct their simulations. Two separate plat-

forms are used primarily in this work: the (1) Skystreak cluster at the University of

Maryland and (2) the Columbia cluster at NASA Ames Research Center. Skystreak

, upon which most DPLR simulations are run, is a Gentoo Linux based system that

consists of 7 dual processor 32-bit AMD Opteron nodes and 7 dual processor 64-

bit Opteron nodes. This setup allows for a maximum 14 computational nodes per

problem; and, in turn, DPLR solutions require, in general, 840 to 4360 CPU hours

to reach final convergence (after multiple individual runs of DPLR). Skystreak uses

the PathScale48 suite for Fortran compiling and OpenMPI49 is for parallelization.

The Columbia supercomputer, used for NEQAIR simulations and some DPLR

grid resolution cases, is capable of 88.88 teraflops per seconds using 13,312 total

computational cores and a SUSE Linux operating system. It is made of 17 Altix

3700 (512 cores each) nodes and 4 Altix 4700 nodes (3584 total cores) nodes. Intel

Fortran50 and OpenMPI form the compilation environment on Columbia. Typical

NEQAIR runs using this cluster take approximately 15 minutes per line of sight,

while DPLR solutions run on the order of what is experienced on Skystreak with the

bonus that more processors can be expended on a given problem.
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Chapter 3

Apollo 4 Benchmarking

This chapter explores benchmark DPLR solutions using the Apollo heat-shield

at Apollo 4 (AS-501)36,63 peak heating conditions in order to better understand po-

tential issues that may be encountered with DPLR using more sophisticated shapes.

To that end, the baseline Apollo heat shield torus is altered parametrically to fully

comprehend the effects of certain geometric features, particularly edge radius, since

shapes generated using the procedure outlined in Chapter 1 do not posses this at-

tribute.

3.1 Baseline Geometry and Design Point

The baseline Block 1 Apollo command module geometry is shown in Figure

3.1. The forebody of the Apollo command module during re-entry, or the portion

of the vehicle that is composed of the heatshield, is a 23◦ half-angle spherical seg-

ment blended into a torus with radius RT = 0.196 m that extends for 133.9◦. The

afterbody is a 33◦ conical frustum with a cylindrical cap (for the purposes of this

work, the outer mold line of the Apollo capsule is assumed to posses a spherical cap

with radius R = 0.231 m). For basic stability comparisons, the center of gravity is

taken at, with respect to the nose of the vehicle, at xcg = 1.35 m, ycg = 0.00 m,

zcg = −0.137 m, consistent with what was used for wind-tunnel tests.64

48



F
ig

u
re

3.
1:

A
p

ol
lo

co
m

m
an

d
m

o
d
u
le

d
im

en
si

on
s

.

49



For computational purposes, a four-block singularity free mesh with 195,840

grid cells (80 points body normal) is used as shown in Figure 3.2. The grid consists

of the Apollo heat-shield cut off at its widest extent, retaining only the forebody and

neglecting everything in the afterbody. Because this geometry, and all subsequent

geometries considered, is symmetric about the x-y plane, only half the heat shield

needs to be included computationally, thus saving on computational costs. The

baseline DPLR simulations of this mesh are conducted at Apollo 4 peak heating

conditions,63 experienced at an altitude of 61 km, M∞ = 32.8, and α = −25◦.
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(a) Surface (b) Symmetry Plane (every other point)

Figure 3.2: Apollo heat shield CFD mesh
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3.2 Baseline DPLR Results

Figure 3.3 shows Mach contours on the symmetry plane and pressure con-

tours on the surface for the baseline Apollo 4 case. Lift and drag coefficients are

calculated as 0.465 and 1.220 respectively, yielding an L/D ratio of 0.381 which is

very close to the ratio of 0.375 predicted by flight data65 at this particular Mach

number. Using the center of mass defined above, the moment coefficient, Cm,cg, is

0.016 which matches well with high speed wind tunnel data.64 Figure 3.4 shows

the total wall heat flux on the vehicle’s surface along its plane of symmetry. Peak

convective heating occurs on the windward (the part of the vehicle pointing into the

wind when at angle of attack) heat shield edge, away from the stagnation point with

a value of approximately 371 W/cm2, 1.68 times the stagnation point value. This

result is consistent with a combination of the observation by Lee and Goodrich36

that the maximum convective heat flux, at zero angle of attack, is 60% larger than

at the stagnation point and the 1.06 correction suggested by Bertin8 to account for

sonic line movement when the vehicle is pitched. Table 3.1 shows a comparison of

the present calculated convective heating rates with past work. The lower-order

approach underestimates computational solutions by 30% for both peak and stag-

nation point convective heat flux. These under-predicted values by the lower-order

method compared to DPLR solutions can be attributed to the failure of the later ap-

proach to account for boundary layer blowing. In fact, the classic Fay and Riddell15

solution, which does account for boundary layer physics, as calculated by Park66 is

almost identical to the DPLR result. Still, for those solutions in which radiation is
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coupled to the convective heat fluxes, estimates over-predict DPLR solutions by up

to 65%.

(a) Surface

(b) Symmetry Plane

Figure 3.3: Pressure/convective heating contours on surface and Mach contours in

symmetry plane for Apollo 4 at peak heating conditions
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Figure 3.4: Symmetry line heating profile for Apollo 4 at peak heating conditions

Table 3.1: Apollo 4 peak and stagnation point convective heating

Author qmax,conv(W/cm2) %Diff qs,conv(W/cm2) %Diff

Present work 371 - 221 -
Johnson et al.2 260 -29.9 154 -30.3

Pavlovsky and Leger67 266a -28.3 - -
Fay and Riddell15 - - 230 4.1

Park66 - - 363 64.3
Curry and Stephens68 - - 339 53.4

Bartlett et al.69 - - 289 30.8
Ried et al.21 - - 227 2.7

aAfter subtracting qrad from Tauber and Sutton17
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At high entry velocities, shock layer radiation becomes significant for blunt

bodies due to ionization and dissociation;69 and, as of now, DPLR has only limited

internal methods for calculating the heating impact from the shock layer. Since

the lower-order approach does not couple convective and radiative heat transfer,

comparing the convective heat flux is an informational point of comparison between

the two aerothermodynamic calculations, yet, if accuracy is required, the present

solutions would need to be coupled to an external shock layer radiation code. The

true nature of the coupling between radiative and convective heat transfer (as ev-

idenced by the spread in estimates by Park, Bartlett et al., and Reid et al.) are

not well understood for these high temperature environments; as such, it is reason-

able to leave the two heating regimes uncoupled until, at least, more flight data is

accrued and better correlations are derived. Essentially, though DPLR convective

heat transfer results are not entirely accurate (in that shock layer radiation is ne-

glected), the observation that peak heating is not at the stagnation point, and is, in

fact, significantly higher shows that computational solution yields results that are,

in the least, qualitatively significant.

3.3 Grid Resolution

Solutions for the Apollo heat shield at Apollo 4 (AS-501) peak heating condi-

tions, experienced at an altitude of 61 km, M∞ = 32.8 at α = −25◦, are compiled

on volume meshes with 40, 60, 80, and 160 points in the body normal direction.

The 80 point solution is the baseline case used in benchmark DPLR runs. Table 3.2
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shows point aerothermodynamic metrics for all these cases, and percent differences

are referenced to the highest resolution case (160 points). The lowest resolution case

shows the greatest disparity with respect to the finer case, especially, with regards

to peak convective heat flux. Here the difference is greater than 10% whereas adding

just 20 more body normal points drops the disparity below 1%. Both the 80 point

case and 60 point case display errors less than 1% for all aerothermodynamic metrics

compared with the finest resolution case; however, not all heat shields have a simple

axisymmetric shape like Apollo, nor do these point metrics accurately portray what

is happening on the entire surface.

Figure 3.5 shows the convective heat flux on the symmetry plane for all four

grid resolution cases. Clearly, the lowest resolution case shows the most erroneous

predictions, especially on the leeward side of the vehicle (the portion of the heat

shield that points away from the wind when pitched). One interesting note is that all

solutions, even the sparsest mesh case, converge at the stagnation point convective

heat flux. The 60 and 80 point cases are nearly identical, but with the finer solution

portraying slightly better results on the leeward side of the vehicle. In this instance,

results reported from an Apollo mesh with 60 points in the body normal would be

nearly identical to the baseline; however, since not all heat shields studied here are

simple shapes, a slightly larger resolution is a safer choice. In that regard, choosing

80 points for the body normal direction for all heat shield meshes is a prudent one.
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Table 3.2: Apollo grid resolution aerothrmodynamics

Pts (body normal)
Parameter 40 60 80∗ 160

CL 0.457 0.463 0.463 0.467
∆(%) -2.141 0.463 0.463 -
CD 1.20 1.22 1.22 1.23

∆(%) -2.44 -0.81 -0.81
L/D 0.3808 0.3795 0.3795 0.3797
∆(%) 0.31 -0.04 -0.04 -
Cm,cg 0.0159 0.0163 0.0162 0.0161
∆(%) -1.24 1.24 0.62 -

qconv,max (W/cm2) 416.5 373.4 373.8 370.5
∆(%) 12.42 0.78 0.89 -

∗Baseline dimension for all DPLR solutions

Figure 3.5: Symmetry plane convective heat flux for Apollo heat shield grid resolu-

tion study
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3.4 Baseline Radiation Results

NEQAIR surface radiative heating results generated from the baseline DPLR

solution are shown in Figure 3.6. Peak radiative heating occurs slightly leeward of

the stagnation point at a value of 217 W/cm2. Stagnation point radiative heating

is only slightly lower at 204 W/cm2. Table 3.3 shows a comparison of the present

calculated stagnation point radiative heating rates with past work. The lower-order

method over estimates NEQAIR stagnation point radiative heat flux by 16%; how-

ever, this overestimation combined with the under-predicted convective heat flux

yields a total stagnation point heat flux (391 W/cm2) that differs from the com-

bined DPLR/NEQAIR solution (425 W/cm2) by only 8%. Total stagnation point

heat flux agrees mostly well (within 25%) with past results, while stagnation point

radiative heat flux agrees to within 20% for most cases. The values that are vastly

greater than the NEQAIR solution use models that do not account for energy dis-

sipation in the boundary layer, resulting in expectedly greater estimates. It should

be noted that for, convective heating, past work resulted in higher values, while

that trend is the opposite for radiative heating. Combining these two phenomena

explains the relative accuracy of the combined DPLR/NEQAIR approach to predict

total stagnation point heat flux. This implies that the effect of coupling would be

to lower radiative heat flux, while increasing convective heat flux, creating only a

negligible difference in the sum. Figure 3.7 shows the convective, radiative, and

total heat flux along the symmetry plane. The maximum overall heat flux occurs

at the location of peak convective heating (windward of the stagnation point) at a
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value 507 W/cm2. This prediction agrees very well with the 480 W/cm2 estimation

by Pavlovsky and Leger.67

Figure 3.6: Surface radiative heat flux contours for Apollo heat shield at Apollo 4

peak heating conditions

59



Table 3.3: Apollo 4 stagnation point radiative and total heating

Author qs,rad(W/cm2) %Diff qs,tot(W/cm2) %Diff

Present work 204 - 425 -
Johnson et al.2 237 16.18 391 -8.00

Flight dataa 167 -18.1373 - -
Curry and Stephens68 176 -13.73 515 21.18

Bartlett et al.69 193 -5.39 482 13.41
Ried et al.21 300 47.06 527 24.00
Park 200170 507 148.53 731 72.00
Park 200466 168 -17.65 531 24.94
LORAN71 320 56.86 - -

Balakrishnan et al.72 184 -9.80 - -

a Calculated using measured peak intensity by Park70

Figure 3.7: Convective, radiative, and total heat flux on symmetry plane for Apollo

heat shield at Apollo 4 peak heating conditions
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3.5 Torus Radius

As previously stated, the forebody of the Apollo command module during re-

entry is made up of a 23◦ half-angle spherical segment blended into a torus with

radius RT = 0.196 m that extends for 133.9◦ until the conical frustum afterbody

begins. This torus, only to the capsules widest extent, is included in the baseline

benchmark results for Apollo 4; however, the geometries generated by the optimiza-

tion process do not include these regions of curvature. What role this torus plays on

a blunt-body’s flow field is detailed in the following subsections through parametric

studies of the baseline Apollo geometry with various different torus designs.

3.5.1 Torus Extent

To further understand the effects the extent of this torus has on the aerother-

modynamics of a blunt-body capsule, the baseline Apollo 4 case (referred to here

as a half torus) is compared to solutions on meshes that include the entire torus

(expanded until the beginning of the conical frustum afterbody) and that include

no torus at all. Figure 3.8 shows a comparison of the wall heat flux on the plane

of symmetry for all three cases. Only minor differences can be seen when any part

of the torus is considered; however, the results obtained without a torus show a

singularity at the edges of the heat shield and a local maximum in a very different

location than the other cases. Since local convective heating is proportional to the

reciprocal of the square root of the local radius of curvature, this asymptotically

high heating at the edge of the heat shield is not surprising; however, another ex-
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planation for these spurious results can be seen by examining the sonic line of the

three cases (Figure 3.9).

For cases that include the torus, regions of subsonic flow spill over to the torus

on the windward side of the heat shield before expanding back to supersonic. When

the torus is absent, flow at the exit of the grid near the windward edge is subsonic,

violating the DPLR boundary condition of a supersonic exit. This numerical limita-

tion can be solved, without introducing some curvature at the edges, by adding an

afterbody to the heat shield. Still, by adding a simple, conical afterbody (thereby

retaining the infinitesimally small radius of curvature at the heat shield edge) with-

out including the wake, there is still the possibility of subsonic flow at the leeward

boundaries of the heat shield. Essentially, this means that the afterbody must be

a fully closed body and the topology must be extended to include the wake, which

will greatly increase the computational cost incurred. To avoid these sky-rocketing

costs, some manner of curvature at the edge of an optimized heat shield must be

added while taking care to not drastically change the original geometry.
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Figure 3.8: Symmetry convective heat flux comparison of Apollo 4 peak heating

case for three different torus extents

Figure 3.9: Sonic line comparison of Apollo 4 peak heating case for three different

torus extents
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3.5.2 Torus Size

Though some finite curvature is required to perform CFD with DPLR on

a blunt-body heat shield, it was unclear what impact the exact amount of edge

curvature or bluntness will have on the aerothermodyamics of a heat shield. As

such, Apollo forebodies with various multiples of the baseline torus radius (up to

5xRT ) are compared to the benchmark Apollo results calculated using Apollo 4

peak heating altitude and velocity at the dominant entry angle of attack, α = −25◦,

and at α = −15◦. The lower magnitude angle of attack case is included to explore

edge radius effects on a blunt-body for which the stagnation point is not near the

vehicle’s edge. Figure 3.10 shows the maximum heat flux on the symmetry plane for

all topologies at both angles of attack. Both curves show that heat flux decreases

in a power law sense with increasing torus radius, which should be the case since

convective heat transfer is function of the inverse of the square of the local radius of

curvature. However, when the stagnation point is further from the vehicles windward

edge (i.e. for α = −15◦) the heat flux decreases at a slightly slower rate than it does

at a higher angle of attack. Since the regions of higher temperature and pressure

occur farther away from the torus at lower angles of attack, it is reasonable to

assume that changing the torus radius will have a lesser impact on the heat flux

in this case. For all torus sizes, the α = −15◦ case has lower peak convective heat

flux. This phenomena can be attributed to the lower velocity gradients experienced

at the edge of the heat shield at that particular angle of attack.

Figure 3.11 shows the resulting lift to drag ratio for all cases of torus radius for
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both considered angles of attack, -15◦and -25◦. The dashed lines show the predicted

Newtonian L/D for each respective angle of attack. When torus radius is small, the

DPLR calculated L/D approaches this predicted value. Since the Newtonian values

are calculated with no radius of curvature at the edge, this trend is understandable.

For both angles of attack, the L/D decreases linearly; however the lift to drag ratio

for the higher angle of attack set of solutions decreases at a faster rate. This occurs

due to peak pressures shifting toward the center of the heat shield rather than being

closer to the highly curved edges. Figure 3.12 is a plot of moment coefficient versus

torus size for both considered angles of attack. The center of gravity may change

with increasing torus radius if more heat shield material is added unevenly to the

windward edge to counter higher heating; but, for all cases studied here, the center

of gravity is considered fixed. Cm,cg increases linearly with torus radius for both

angles of attack due to the increased moment arm induced by the larger tori. Also,

note, that for a larger edge radius (≈ 5xRT ), α = −15◦ is nearly the trim angle of

attack.
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Figure 3.10: Peak convective heat fluxes for Apollo heat shield at Apollo 4 peak

heating conditions for two angles of attack

Figure 3.11: Lift to drag ratios versus torus radius for Apollo heat shield at two

angles of attack
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Figure 3.12: Moment coefficient for Apollo heat shield at different angles of attack

3.5.3 Further Considerations

Edge curvature plays a significant role in determining the resulting aerother-

modynamics of a vehicle. Mission requirements and hardware concerns (i.e. launch

vehicle mating) will often determine what the afterbody of a vehicle will look like

and how it will attach to the heat shield. Since these concerns are beyond the scope

of this work, a fixed torus matching that of the Apollo capsule (RT = 0.196 m) is

blended to all blunt-body optimized designs for further study. However, for elliptical

bases, scaling effects need to be considered when deciding upon which axis to apply

the torus. Figure 3.13 shows an elliptical heat shield (to be discussed in Chapter 4)

with the torus applied on the semi-major axis on the left and on the semi-minor axis

on the right. Although applying the curvature along the shorter side first generates

a larger surface area, the peak heat flux is significantly less than if the torus were
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first applied on the longer side. These lower heating rates would, in all likelihood,

require cheaper materials to dissipate. As such, all elliptical and blunt designs to

be studied here will have the torus added to the axial profile along the semi-minor

axis before being swept around the base cross-section.

Figure 3.13: Convective heat flux on an elliptical heat shield for two different meth-

ods of torus generation

3.6 Computational Cost Summary

Table 3.4 shows a summary of grid sizes, iteration counts, and computational

time for all Apollo derived cases considered here. There is no consistency in the

time it takes to arrive at a final solution, since convergence occurs only at the user’s

satisfaction. That is, the solution is allowed to mature until the user deems the

solution to have stabilized (usually by the time the L2 norm of the residuals of a

conserved variables is less than 10−8). Still, no case took less than 390 CPU hours

and 20,000 iterations for convergence. In fact, most cases needed more time to reach
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sufficient convergence. NEQAIR solutions were run using 2,667 lines of sight for the

Apollo geometry. At 15 minutes per line of sight, the single uncoupled radiation

solution needed 666.75 CPU hours to complete.

Table 3.4: Summary of computational cost for Apollo edge radius cases

R/RT α Grid Size (# cells) Iterations CPU Time (hrs)

0.100 -25◦ 197120 64400 1831.2
0.200 -25◦ 197120 77900 1594.46
0.200 -15◦ 197120 52500 987.84
0.250 -25◦ 191720 70000 1470.0
0.333 -25◦ 191720 46600 1470.0
0.500 -25◦ 203040 66000 1186.08
0.750 -25◦ 203040 85300 2286.62
1.000 -25◦ 195840 20400 392.84
1.000a -25◦ 98560 108000 1099.99
1.000a -25◦ 147840 37000 604.33
1.000a -25◦ 394240 55500 2123.33
1.000 -15◦ 195840 42900 1524.46
1.500 -25◦ 205560 36800 735.0
1.500 -15◦ 205560 34000 692.16
2.000 -25◦ 205560 41700 976.08
2.000 -15◦ 205560 40700 1240.54
2.500 -25◦ 205560 38100 1034.46
2.500 -15◦ 205560 33600 738.92
5.000 -25◦ 205560 52300 1664.46
5.000 -15◦ 205560 31400 1065.54

aGrid resolution cases
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Chapter 4

Slender Bodies: A High L/D Case

The n2 parameter, from Equation 1.1, controls the sharpness of the base cross

section for blunt-body heat shields of Johsnon, et al.4,6 Optimized geometries have

utilized a lower bound of 1.3 for this parameter along with a more slender profile

to generate high L/D solutions; however, it is unclear as to how this sharpness will

affect the off-stagnation point performance of these generated shapes. As such, a

representative geometry, optimized for high L/D at Apollo 4 peak heating condi-

tions, is explored in this chapter.

4.1 Baseline Geometry and Results

To study the full flow field of the high L/D shapes classified by Johnson, et

al.2,6 , DPLR solutions are obtained for a spherical segment heat shield optimized

for maximum L/D at Apollo 4 peak heating conditions (ht = 61 km, M∞ = 32.8).

The modified Newtonian approach predicted a lift to drag ratio of 1.24 and qs,conv of

240 W/cm2 for an 89◦ spherical segment with n2 = 1.3, m = 4, and e = −0.968 at

α = 18◦. This shape (see Figure 4.1) has more of a “nosecone” like geometry in that

it is more slender and eccentric than the Apollo heat shield. As such, edge radius

effects would be expected to have less significant an impact on overall performance,

since the velocity gradients at the boundaries are less steep than those for a more
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classical spherical segment blunt design. for this study a four block structured mesh

with 236,440 grid cells is used as shown in Figure 4.2.

Figure 4.1: 89◦ spherical segment with n2 = 1.3 optimized for maximum L/D
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(a) Surface

(b) Symmetry Plane (every other point)

Figure 4.2: mesh for 89◦ spherical segment optimized for maximum L/D
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Figures 4.3 and 4.4 show surface heat flux and pressure contours as well as

symmetry plane Mach and pressure contours respectively. Mach contours are very

close to the vehicle’s surface, resulting in a thinner shock layer for radiation than

exists with a more blunt geometry (i.e. Apollo). DPLR solutions show CL = 0.795

and CD = 0.711, resulting in L/D = 1.118. The lower-order prediction for L/D

is 11% higher than the CFD result. This difference is due, in most part, to the

simpler method ignoring surface pressures in the shadow region (~V · n̂ ≥ 0) that

may contribute to lift and drag. Still, this offset is not extreme; and, the predictions

by the lower-order approach would still be useful in design studies.

Convective heating at the stagnation point is calculated as 430 W/cm2. The

low-order approach under-predicts this value by 44%, a larger discrepancy than was

observed for Apollo 4. This difference implies that empirical correlations used for

heating rates may not be ideally suited for elliptical base cross sections such as the

one seen here. Peak heating occurs along the leading edge of the vehicle far away

from the stagnation point at a value of approximately 980 W/cm2. This value is

2.28 times higher than the DPLR calculated stagnation point heat transfer and 4.08

times greater than the low-order stagnation point prediction. Essentially, the edge

of the parallelogram base cross section (controlled by the n2 parameter) creates a

sharp leading edge away from the nose near the edges of the heat shield, that gen-

erates what is almost an attached shock-wave at the point where highest convective

heating is shown to occur. The heat flux is expectedly high in that area because

there is little gas, in the shock layer, with which to dissipate the high temperatures

created by the shock-wave. Because the lower-order approach only looks at the stag-
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nation point for heating rates, it omits an area of adverse heating that may make

the design infeasible. For future optimizations, a situation such as this one can be

avoided by altering the optimization constraints in such a way that would prevent

near attached shock-waves from forming on a generated heat shield.The simplest

way to do this would be to raise the lower bound of the sharpness parameter, n2 to

1.4 or 1.5.

Figure 4.3: Surface convective heat flux and pressure contours for 89◦ spherical

segment optimized for maximum L/D
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(a) Mach Number

(b) Pressure

Figure 4.4: Symmetry plane contours for 89◦ spherical segment optimized for max-

imum L/D
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4.2 Surface Grid Resolution

Furthermore, the impact of surface grid resolution on the resulting aerother-

modynamics of the above slender heat shield is examined by comparing results from

the representative high L/D shape (an 89◦ spherical segment with n2 = 1.3, m = 4,

and e = −0.968 at α = 18◦ at Apollo 4 peak heating freestream conditions) using

a baseline surface grid (236,440 total cells) with one in which the number of points

in both surface directions (i and j) are doubled (1,205,600 total cells). Table 4.1

shows the resulting aerothermodynamics of these two cases. The lower resolution

case shows good agreement (within 1.5%) with the finer resolution solution for aero-

dynamic coefficients of lift and drag but shows a greater than 15% difference with

respect to peak convective heating.

A closer examination of the surface convective heat flux of these two meshes

(see Figure 4.5) shows a clearer picture of this disparity. In both cases, peak heating

occurs at nearly the same position, on the leading edge away from the stagnation

point, but the higher resolution solution shows a larger area of high heating around

that point at values much higher than seen in the low resolution case. Likely, the

greater number of points generates a shape that is sharper than geometrically possi-

ble with fewer points. In reality, a heat shield with this design would have a leading

edge that would ablate, or burn up, as it experienced these high heat loads. Es-

sentially, it would have an initial shape that is more like the fine mesh that would

eventually become more like the sparser mesh over time. The lower point case is

probably more artificially blunt than it is meant to be, if only the geometric parame-
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ters were considered, which causes heating rates to be reported lower. Still, nothing

in these results conflicts with the above conclusion that an n2 value of 1.3 allows

for the possibility of extreme off-stagnation point heating rates that may reach or

exceed material limits; in fact, they only underscore it.

Table 4.1: Aerothermodynamics for slender heat shield surface grid resolution study

Cells (Surface) CL CD L/D qconv,max (W/cm2)

236,440 0.795 0.711 1.118 978.75
1,205,600 0.800 0.705 1.135 1173.2

∆ (%) -0.625 0.851 -1.464 -16.574

Figure 4.5: Surface convective heat flux for slender heat shield surface grid resolution

study
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4.3 Radiation

NEQAIR surface radiative heating results generated from the high L/D test

case DPLR solution are shown in Figure 4.6. Peak radiative heating is 106 W/cm2

and occurs at the stagnation point. The lower-order approach predicts stagnation

point radiative heating as 190 W/cm2, which is 79% higher than the NEQAIR

result. This disparity is much greater than the 16% difference seen in the Apollo

benchmarking case. As such, it is entirely possible that the assumptions used in

applying the Tauber and Sutton model for radiative heating in the lower-order

method may be incorrect. Likely, the relations used to calculation shock stand off

distance, the most important factor in determining the radiative heating, do not

account for elliptical geometries such as those with oblate stretching in the base

cross-section seen here. Since these models are empirical in nature, this implies the

necessity for further wind tunnel and flight tests to provide the data points needed

in creating an approximation that has even greater physical basis.

Using the value of radiative heating calculated by NEQAIR, the total stagna-

tion point heating is 536 W/cm2. This result compares favorably to the lower-order

prediction of 430 W/cm2 (a -20% difference). In reality, the convective and radia-

tive heating are drastically under-predicted and over-predicted by the lower-order

method respectively when compared to the present computational approach. So,

in essence, the errors introduced to the convective heat flux model by the elliptical

cross section are canceled out by the errors in predicting true shock stand off dis-

tance by the radiative heating model. While certainly not intended, this inaccuracy
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in the underlying models generates overall results that are indeed accurate, and can

be used effectively for first-pass design studies.

Not surprisingly, NEQAIR predicts little to no radiative heating on the lead-

ing edge of the vehicle at the location where maximum convective heat flux occurs.

This result confirms the earlier assertion that the shock-wave must be very close to

the body at that point. Essentially, because the shock layer is so small, there is very

little high temperature gas necessary to radiate heat back to the vehicle’s surface.

Still, the peak convective flux is almost twice the total heating felt at the stagnation

point and can not be ignored, as it nears design limits for the Orion CEV capsule.

Figure 4.6: Surface radiative heat flux and pressure contours for 89◦ spherical seg-

ment optimized for maximum L/D
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4.4 Changing Edge Sharpness

The effective edge sharpness of the high L/D example is further studied by

comparing the baseline (n2 = 1.3) case to other designs with the all same parameters

except a different value of n2. Figure 4.7 shows the peak heat fluxes for four different

values of n2, and it can be seen that heating decreases approximately with the inverse

cube of the sharpness parameter. Essentially, by increasing the bluntness of the

edge on the base cross section, large reductions in peak heat flux, when compared

to the baseline (n2 = 1.3), are obtained. Figure 4.8 shows the lift to drag ratios

for the four cases of n2 studied here. In all cases, the modified Newtonian solution

over-predicts the calculated L/D by up to 10%. This discrepancy is caused by the

lower-order method’s consistent inability to capture reductions in lift do to pressures

experienced on the body in the vehicle’s shadow region, which are neglected by the

modified Newtonian approach. This phenomenon is apparent in that the modified

Newtonian approach predicts lift coefficients that are 2-10% more than the high

fidelity model; however, the accuracy of the Modified Newtonian approach does

improve as the base cross section becomes more elliptical (n2 ≈ 2.0). When the

base is more like a parallelogram (n2 ≈ 1.1-1.3), the revolved surface will have a

sharp leading edge blending into a blunt nose. A Newtonian solution is not as well

suited for these sharp leading edges;9 as such, the blunter edged solutions (n2 ≈ 2.0)

should be more accurate.
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Figure 4.7: Maximum convective heat fluxes for 89◦ spherical segment with varying

n2 parameter

Figure 4.8: Lift to drag ratios for 89◦ spherical segment with varying n2 parameter
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4.5 Computational Cost Summary

Table 4.2 shows a summary of grid sizes, iteration counts, and computational

time for all cases considered in this section. In order to properly mesh the paral-

lelogram cross-section geometry, more points are needed than the simpler Apollo

heat shield. As such, more computational effort is needed in general for these cases.

No case took less than 900 CPU hours and 34,000 iterations to converge. The grid

resolution case took over 204 days of CPU time to complete. This was facilitated

by the much larger Columbia supercomputing cluster, as the use of 48 processors

in parallel lessened the physical duration to eight and half days. All other cases

were performed on the Skystreak cluster, using only 14 processors in parallel. The

NEQAIR radiation case require 3,864 lines of sight and 966 CPU hours to complete.

Table 4.2: Summary of costs for 89◦spherical segment optimized for max L/D

n2 Grid Size (# cells) Iterations CPU Time (hrs)

1.1 236440 56000 1625.56
1.3 236440 65300 1738.38
1.3a 1205600 86200 9800.00
1.5 236440 42000 1135.54
1.7 236440 52800 1493.38
2.0 236440 34500 937.16

aGrid resolution case done on Columbia cluster
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Chapter 5

Vehicle/Trajectory Optimized Geometries

5.1 Lunar Return Optimized Designs

This section presents computational solutions for heat shields that were gen-

erated for earth return following a mission to the moon using the trajectory/vehicle

coupled optimization scheme discussed in Chapter 1. Due to time and computa-

tional constraints, no NEQAIR radiation simulations are undertaken for these cases.

As such, only convective heating and aerodynamic calculations are presented.

5.1.1 General Summary

CFD solutions are obtained for heat shields generated using the coupled opti-

mization technique for lunar return entry velocities, VE = 11 km/s, and entry flight

path angles of γE= −6.0◦ at the location on the trajectory upon which the peak

instantaneous heat flux is predicted to occur. Table 5.1 shows a summary of the

geometry, design point, the aerothermodynamics calculated from DPLR solutions

and the predicted aerothermodynamics using the lower-order approach for all cases

studied in this section. The cases maintain their descriptors from Table 12.1 of Ref-

erence [6]. Percent differences, in reference to the DPLR solutions, are presented for

the lower-order results in parenthesis where applicable. All shapes considered here

have a spherical segment axial profile, as all other choices for axial shape mimicked
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a spherical segment as they approached an optimum. Basically, optimized power-

law and spherically blunted cone geometries were disguised spherical segments for

lunar return trajectories. Optimizations were performed at L/D = 0.3, 0.5, and 1.0

for two objective functions sets: (1) maximizing downrange while minimizing heat

load and (2) maximizing cross range while minimizing heat load. Trajectory entry

corridors widths of up to 1.37◦ were used to ensure mission feasibility (in the sense

that a small change in entry flight path angle would not result in vehicle loss), and

skip trajectories were used to take advantage of downrange gains incurred by such

mission profiles. This analysis tended toward designs with base cross sections that

were either parallelograms or pure ellipses (or combinations of the two).

As before, the analytical approach under-predicts DPLR peak stagnation point

heating by 30% to 70%, and the aerodynamic solutions match up very well with the

lower-order predictions (within 10% for all cases). Cases C and D experience their

maximum heat flux at higher altitudes (above 64 km) than do cases A and F (below

60 km), corresponding to both the lower-order method and the CFD predicting much

lower heating rates and heat loads. Since these cases do their primary deceleration

occurring in lower density atmosphere, this result is expected.

The following subsections detail the differences between the the lower-order

methodology and DPLR in convective heating rates for the different cases described

in Table 5.1. Grid topologies are not shown for each design, but all CFD meshes

are four-block structured grids with 80 points in the body normal direction. Total

grid cells for each case are tabulated in Table 5.2 at the end of this section.
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5.1.2 Case A

Case A (see Figure 5.1) is a slender heat shield with a rounded parallelogram

base much like those discussed in Chapter 4. A shape like this one is very different

from a classic spherical segment and may be more difficult to implement into an

actual vehicle, but its high L/D allows it to possess the greatest downrange, or

the maximum horizontal distance the craft travels after entry interface, of all cases.

This geometry’s relatively low reference area (Sref ) means that it must decelerate

in higher density atmosphere thus creating the most adverse heating environment.

Low surface area corresponds to a low drag area (CDSref ) which is proportional to

drag divided by dynamic pressure, itself a function of altitude (free-stream density).

Basically, to achieve the same amount of deceleration (drag) using a shape with a

smaller surface area, the dynamic pressure must be higher. This is achieved only at

lower altitudes (corresponding to higher free-stream densities).

DPLR solutions show that absolute peak heating occurs along the leading edge

of the vehicle away from the plane of symmetry at 1420 W/cm2, which is 2.6 times

the stagnation point value and well above Orion CEV feasibility limits. Essentially,

in order to produce a design with greater aerodynamic maneuverability, the vehicle

would need to experience heating rates higher than even the most conservative

estimates for Apollo. The situation here is similar to what was observed in Chapter

4. The lower-order approach seems to not account for regions of potential high heat

fluxes away from the stagnation point. These results further emphasize the dangers

in using a parallelogram base cross section with n2 close to 1.3.
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Figure 5.1: Case A surface pressure and convective heating profiles
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5.1.3 Case C

Case C (see Figure 5.2) is similar in shape to the baseline Orion CEV heat

shield (5.03 m diameter, θs = 25.0◦, and no eccentricity). This geometry is shown

here to provide a basis of comparison for the other optimized designs. This design

has a relatively low L/D, giving it the lowest cross range capabilities of all designs

studied for lunar return. Like for Apollo 4, peak convective heating occurs on the

symmetry plane further windward of the stagnation point at 260 W/cm2. The

Orion capsule’s convective wall heat flux is lower than that of Apollo because a

larger planform area allows it to decelerate much higher in the atmosphere (64.1

km vs. 61 km). Basically, the larger drag area yields a lower free stream density

at peak instantaneous heating, and the lower density corresponds to lower peak

heating rates.As before, the maximum convective heating pulse is 1.66 times the

heating experienced at the stagnation point and is the lowest of all cases examined

here. At least in terms of convective heating, this simple geometry would appear

to provide the ideal performance. It remains to be seen, however, whether or not

the radiating shock layer, necessary to produce lower convective heating rates, will

cause total heat fluxes to exceed what is experienced by the other designs.
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Figure 5.2: Case C (Orion) surface pressure and convective heating profiles
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5.1.4 Case D

Case D (see Figure 5.3) is an oblate design with an L/D slightly larger than

that of Orion (≈ 0.3). Here, peak heating is 289 W/cm2, which is 1.49 times the

heating at the stagnation point. Peaking heat is spread out all along the windward

edge of the heats shield, suggesting that the effect of adding edge radius, in the

form of a torus, is to temper velocity gradients as the flow is turned around that

edge. Without the added curvature, peak heating rates would be extremely higher,

leading to the necessity to use more sophisticated (and more expensive) thermal

protection material. This case also exhibits the largest relative spread between

calculated convective heating rates and low-order predictions.

The lower-order approach suggested that this geometry would experience 50%

of the convective heat flux experienced by Orion. The reason being that this design

would decelerate at a higher altitude in less dense atmosphere. DPLR results show

that this trend does not actually exist; and that, in fact, this design’s stagnation

point heat flux actually exceeds that calculated for the Orion analog. This obser-

vation supports the previous assertion that non-axisymmetric shapes (i.e. those

generated by an eccentric base) cause adverse heating conditions that, in turn, force

the semi-empirical correlations used in the lower-order method to fail. Without flight

data for such eccentric shapes, it is nearly impossible to discern the true relationship

between eccentricity and the resulting heating environment.
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Figure 5.3: Case D surface pressure and convective heating profiles
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5.1.5 Case F

Case F (see Figure 5.4) is a prolate design with a rounded diamond base

optimized using a conservative mass estimation that includes a three-fold increase in

heat shield mass to deal with heating loads. Peak heating is 573 W/cm2, 1.45 times

the stagnation point rate; and, it can be found further windward on the symmetry

plane than the stagnation point. Greater mass forces the vehicle to decelerate lower

in the atmosphere, yielding high convective heating rates, but not more than the

high L/D case.

For this design, the low-order stagnation point convective heat flux under-

predicts the DPLR result by 67%. Both this case and the previous one show large

discrepancies in predicting the stagnation point convective heating rates using the

low-order approach. The elliptical nature of these geometries would appear to force

the semi-empirical correlations to report incorrect estimates. Either the method

in which effective nose radius (the driver for the convective heat flux relations) is

calculated is the source of this error or the correlations themselves fail to account

for the true physical nature of the flow around such shapes.
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Figure 5.4: Case F surface pressure and convective heating profiles
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5.1.6 Computational Cost Summary

Table 5.2 shows a summary of grid sizes, iteration counts, and computational

time for all cases considered in this section. No case took less than 30,000 iterations

and 1,400 CPU hours to converge. Case A needed the most iterations to converge

to a stable solution due to a small pocket of subsonic flow existing at the windward

exit of its mesh. More care was needed to ensure that this case was not influenced by

this discrepancy and, in fact, did reach a stable solution. There exists a possibility

that this boundary condition violation would introduce errors into the final solution

for this case; however, results for that design are consistent with a similar shape

(see Chapter 4), suggesting that the errors, if they exist, are negligible.

Table 5.2: Summary of computational costs for lunar return cases

Case Grid Size (# cells) Iterations CPU Time (hrs)

A 268800 85400 3247.16
C 250880 47100 1882.16
D 336000 49300 3640
F 232960 30000 1442.78
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5.2 Mars Return Optimized Designs

This section presents computational solutions for heat shields generated for

earth return after a mission to Mars using the coupled trajectory/vehicle optimiza-

tion scheme discussed in Chapter 1. Again, no NEQAIR simulations are included

for these cases due to time and computational constraints. As such, only convective

heating and aerodynamic predictions are presented. A possible breakdown of the

continuum flow assumption used by DPLR is discussed in this section, but non-

continuum simulations are left for future work.

5.2.1 General Summary

DPLR results are obtained for heat shields generated using the coupled op-

timization technique for Mars return entry velocities, VE = 12.5 km/s, and entry

flight path angles of γE = −6.4◦ at the location on the trajectory upon which the

predicted peak instantaneous heat flux occurs. Table 5.3 shows a summary of the

geometry, design point, the aerothermodynamics calculated using DPLR, and the

lower-order predicted aerothermodynamics for all cases studied in this section. The

cases maintain their descriptors from Table 13.1 of Reference [6]. Percent differ-

ences, in reference to the DPLR solutions, are presented for the lower-order results

in parenthesis where applicable. Both spherical segment and sphere-cone axial pro-

files are considered here as the optimizer generated independent geometries for these

two types of topologies. All power-law optimized shapes were simply disguised ver-

sions of the two other profiles. Optimizations were performed at L/D = 0.3 and 0.5
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for two objective functions sets: (1) maximizing downrange while minimizing heat

load and (2) maximizing cross range while minimizing heat load. No optimizations

were done at L/D = 1.0 because those designs resulted in heat loads that were

considered infeasible.4 Smaller entry corridor widths of up to 0.79◦ were necessary

to generate flyable trajectories here.

Similarly to the lunar return cases, designs with the lowest heat loads will

experience their peak heat pulses at much higher altitudes. For all Mars return

cases, DPLR reports stagnation point convective heat fluxes much lower than does

the simple, analytical method. For example, the stagnation point heat flux for case

B is only 19% that of what was calculated using the modified Newtonian approach.

At Mars return velocities, the shock layer is actually larger than at lower speeds

(larger shock stand off distance); and, consequently, shock layer radiation should

play a larger role in the resulting heating profile for a given blunt-body heat shield.

A firm grasp of the potentially strong coupling between convection and radiation

must be reached before making any concrete conclusions about the designs studied

in this section. Still, there is a great deal to glean from comparing the higher

order simulation with lower-order predictions, especially if the aim is to improve the

lower-order method for use in initial design studies.

Furthermore, most of these cases require the addition of increased numerical

dissipation for convergence. This increased dissipation is necessary due to the possi-

bility of non-continuum flow present at these entry conditions. Continuum flow can

be classified through the use of the Knudsen number, KN , which is the ratio of mean

free path (distance a molecule will travel before colliding with another molecule) to
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a characteristic length. Mean free path, in turn, is a function of temperature divided

by pressure.13 Regions of relatively high temperature and relatively low pressures

are more likely for the higher Mars return velocities, yielding values of KN that

may violate the continuum requirement of KN < 0.3. Another way to classify

non-continuum flow is by using the gradient-length local Knudsen number:73

KN,GLL =
λ

Q

∣∣∣∣dQdl
∣∣∣∣ (5.1)

where λ is the mean free path, Q is a flow property (usually temperature), and l is a

distance between two points in the flow field along the direction of steepest gradients.

Continuum breakdown occurs when the value of this parameter is less than 0.05,

and this definition of Knudsen number is better suited to the discretized flow fields

used in computational fluid dynamics as it is relatively easy to extract gradients

from a computational solution. Adding extra dissipation may force continuum flow

to exist everywhere in the flow field, but it adds further sources of error to the

solutions. Though results are consistent with what is seen at lunar return velocities,

it is paramount that this additional source of error be classified and quantified before

robust conclusions are made. Such classifications are left in the realm of future work.

The following subsections detail the differences between the the lower-order

methodology and DPLR in convective heating rates, as the aerodynamic predictions

are almost identical, for the different cases described in Table 5.3. Grid topologies

are not shown for each design, but all CFD meshes are four-block structured grids

with 80 points in the body normal direction. Total grid cells for each case are

tabulated in Table 5.4 at the end of this section.
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5.2.2 Case A

Case A (see Figure 5.5) is a prolate shape, similar to Case F for lunar return,

with the highest L/D of all shapes considered here; however, this maneuverability

comes at the cost of having, by far, the highest maximum convective heat flux. Peak

convective heating (657 W/cm2) occurs along the axis symmetry further windward

of the stagnation point and is 1.47 times greater than the calculated value there.

The lower-order stagnation point convective heat flux is 64% lower than the DPLR

calculation, which is the largest discrepancy in this category for all cases for Mars

return.

Notably, this case is the only one studied in this section that does not need

extra numerical dissipation to converge. This suggests that continuum flow assump-

tion is valid for this design at its predicted peak heating trajectory point and that

the conclusions drawn from these results are free of the additional errors that plague

the other heat shields examined for Mars return. Case F for lunar return, which is

nearly the same shape as this design, shows an almost identical offset for stagnation

point convective heat flux (a 67% difference between the lower-order methodology

and DPLR). In that respect, this severe under-prediction by the lower-order ap-

proach implies that the semi-empirical correlations are not suited to a shape of this

class for the same reasons as discussed in Section 5.1.5.
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Figure 5.5: Case A surface pressure and convective heating profiles
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5.2.3 Cases B and F - Orion Analogs

Cases B (see Figure 5.6) and F (see Figure 5.7) are Orion sized spherical

segments (5.03 m diameter, θs = 25.0◦, no eccentricity) simulated using a lower

(no additional heat shield mass added to account for heat loads) and an upper

(three-fold increase in heat shield mass) mass estimation respectively. Both cases

have peak heating occurring along the axis of symmetry further windward of the

stagnation point. Peak heat flux is 1.45 (320 W/cm2) and 1.75 (361 W/cm2) times

that experienced at the stagnation point for the lower and upper mass estimations

respectively. These particular values bracket the baseline Apollo value (1.66) and

fall well within the span of what was observed for lunar return.

Both modified Newtonian solution sets report stagnation point convective heat

fluxes that are relatively similar to their DPLR counterparts (7% and 23% less

respectively). Since added dissipation was needed for these cases, it is reasonable to

assume that the true difference between the two approaches will actual be larger (on

the order of what was observed for Apollo and axisymmetric lunar return designs).

When mass is increased, the lower-order method shows a stagnation point heat

flux increase of 12%. Essentially, additional mass translates to a lower altitude

deceleration and, thus, higher heating rates. DPLR solutions, on the other hand,

show a 36% increase convective heating rate at the stagnation point. This is a

relatively modest increases that may be an artifact pf the added dissipation. Still,

nothing in the CFD results suggest that anything other than altitude is responsible

for the increase in convective heat flux.
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Figure 5.6: Case B (Orion) surface pressure and convective heating profiles

Figure 5.7: Case F (Orion) surface pressure and convective heating profiles
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5.2.4 Case D

Case D (see Figure 5.8) represents an oblate design, with similar L/D to the

Orion analog heat shield, optimized for minimized heat load an maximum cross

range using the lower mass estimation. Peak heating is spread out along the wind-

ward edge of the vehicle upstream of the stagnation point. Peak convective heat

flux (236 W/cm2) is 2.15 times more that which is experienced at the stagnation

point (128 W/cm2), and the lower-order approach under-estimates stagnation point

heating rates by approximately 30%. Though this case has an eccentric base, the

discrepancy between DPLR and low-order results is on the order of what was ob-

served for Apollo 4. Simply, while eccentricity pushes the convective heat flux up,

the added dissipation drops the calculated rate, creating a false sense of consistency

with axisymmetric cases (the lower order method under-predicts computational so-

lutions by ≈ 70% for all other elliptical base cases).

This case was meant to represent a marked improvement over the baseline

Orion geometry as its larger surface area should allow for lower heat loads and heat

fluxes, while maintaining similar aerodynamic performance (i.e. L/D, pxrs, pdwn).

At first glance, the DPLR results show such an improvement. A comparison of the

two cases reveals that peak convective heating decreases by a modest 26% while

stagnation point convective heating lowers by 30% when comparing this case to

the low mass Orion analog. Similarly, the modified Newtonian approach predicts a

slightly larger 35% decrease in stagnation point heat flux between the two cases. The

more elliptical heat shield shows a marked decrease in peak heating when compared
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to a simple spherical segment. This is the opposite trend than was observed for

lunar return. There, the heating rate actually increased when transitioning from

an axisymmetric heat shield to an elliptical one. The disparity that exists between

the different flight regimes stems, most likely, from the poor classification of non-

continuum effects that precipitates the need for added numerical dissipation, rather

than something physically different in the flow fields for Mars and lunar return.

Furthermore, it is interesting to note that surface heating contours for Case D

show that peak heating is more spread out over the entire windward edge of the heat

shield as opposed to the more local and concentrated heat pulse displayed in case

B. This means that the highest heat loads would potentially be more widely spread

over the elliptic heat shield, forcing the addition of more thermal material which, in

turn, adds to vehicle weight. Simply, there is no single metric here that can prove

whether or not this shape is really an improvement over the simpler axisymmetric

geometry. Really, until all the errors of non-continuum flow and the elliptical effects

can be quantified into improved empirical correlations, it will always be difficult to

determine which shape is more ideal.
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Figure 5.8: Case D surface pressure and convective heating profiles
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5.2.5 Computational Cost Summary

Table 5.4 shows a summary of grid sizes, iteration counts, and computational

time for all cases considered in this section. No case took less than 30,000 iterations

and 800 CPU hours to converge. Case D needed the most time to arrive at a steady

state solution, possibly due to side-effects from the added dissipation. Case A, which

needed no extra numerical dissipation, converged the fastest, while the other cases

were all much more computationally intensive. Probably, the numerical dissipation,

though helping keep the solution stable, is the source of the slow convergence rates.

Table 5.4: Summary of computational costs for Mars return cases

Case Grid Size (# cells) Iterations CPU Time (hrs)

A 219520 30500 847.84
B 250880 52600 1773.38
D 250780 91100 2714.46
F 250880 40600 1446.67
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Chapter 6

Conclusions

6.1 Summary of Results

In general, computational fluid dynamics solutions of the Apollo 4 capsule and

of optimized heat shield geometries show that the lower-order approach discussed in

Chapter 1 gives reasonable estimations of aerothermodynamic properties useful for

initial design studies. Particularly, CFD solutions show that the modified Newtonian

approach, as expected, gives highly accurate predictions for the aerothermodynamic

parameters (i.e. CL, CD, and L/D); however, large disparities in convective and

radiative (where applicable) heating profiles are seen. The following subsections

detail the important results discussed in this work.

6.1.1 Apollo 4 Benchmarking

For the Apollo axisymmetric heat shield at Apollo 4 peak heating conditions,

the lower-order approach under-predicts convective stagnation point flux by 30%

and over predicts stagnation point radiative heat flux by 16% when compared to

computational solutions. These disparities can be attributed to the failure of the

lower-order method to capture boundary layer physics. The correlations used to

calculate the heating profiles in the analytical approach were formulated for simple

axisymmetric shapes like spheres; as such, these offsets provide a useful baseline
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for all other comparisons of the computational solutions to the lower-order ones.

Essentially, if the errors seen for other geometries exceed the ones seen here, then

other inaccuracies, above and beyond boundary phenomena, must exist in the lower-

order approach. Though these errors are modest but significant, combining the two

heating regimes yields an offset of only 8% for total heat flux between the two

approaches. The errors that manifest themselves in the low-order correlations used

to calculate heat transfer would appear to cancel each other out.

Edge radius plays a major role in the aerothermodynamics of a blunt-body

heat shield, especially with regards to its heating environment. Ignoring curvature

at the edges of the heat shield introduces discontinuities in the heating profile and

may even cause a violation of DPLR boundary conditions. For the Apollo capsule,

peak heating decreases as a power law function of the exact curvature that exists

at the edge of the vehicle, even at an angle of attack that would place the stagna-

tion point further away from the windward edge of the heat shield. Including edge

radius as a design variable in the design process may prove difficult without more

detailed mission profiles, but is necessary to add this feature if the a true optimum

geometry is desired. One way to implement edge curvature into the optimization

process would be to blend a torus, of either fixed or variable radius, to the geome-

tries generated by the process discussed in Chapter 1. This addition would cause

additional computational cost, through the addition of mesh points and the possible

inclusion of more optimization constraints, but the results would provide a much

more accurate representation of what would be expected aerothermodynamically

from an actual blunt-body heat shield.
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6.1.2 High L/D shapes

For a representative slender, high L/D heat shield with n2 = 1.3, the lower-

order approach under-estimates stagnation point convective heating by 44% and

over-predicts stagnation point radiative heat flux by 79% compared to the compu-

tational solutions. For convective heat flux the percent offset is similar to what was

observed for the Apollo benchmark case because the stagnation point falls in a highly

spherical region of the heat shield. Still the 14% increase (from 30% seen for Apollo

4 to 44% seen here) in convective heat flux offset (comparing the lower-approach to

DPLR solutions) suggests that the elliptical nature of the base cross section may

cause the relations sued to predict this value in the lower-order approach to break

down. The stagnation point radiative heat flux offset is much larger than the 16%

seen for the axisymmetric Apollo case. Likely, the process by which shock stand-off

distance (the driving factor for radiative heat flux) is calculated is not suitable for

a slender body such as this one. Still, more evidence to this effect would need to be

accrued before this assertion could be truly corroborated. Again, combining the two

heating rates calculated computationally generates a result that compares favorably

(within 20%) to what was predicted using the lower-order approach.

At Apollo 4 peak heating conditions, using n2 = 1.3 does indeed produce

high lift geometries; however, the heating profiles for these shapes show maximum

convective heating to be more than twice what is experienced at the stagnation

point. The effective sharpness of the base cross-section creates a sharp leading edge

near the boundaries of the heat shield when the axial profile is added to complete
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the geometry. While not exactly a discontinuity, the low bluntness at this leading

edge generates a thin shock layer that contributes to the adversely high heating rates

experienced near the edges of the heat shield. This same thin shock layer generates

negligible radiative heat transfer at the point of highest heating, but the maximum

convective heating is still almost twice that of the total heat flux at the stagnation

point (where peak radiative heating occurs). Some newer materials might be able

to withstand heating rates at or near 1000 W/cm2, but that would push design

limitations imposed for the current Orion CEV capsule and significantly add to

vehicle cost. For the representative high L/D shape, maximum convective heating

decreases as a power law as the n2 parameter is increased. A an approximate 40%

reduction in peak convective heating can be obtained by increasing the n2 parameter

to 1.5 while still maintaining an L/D greater than 1. As such, future optimizations

should alter the lower bound on this n2 parameter to 1.4 or 1.5 in order to generate

high L/D geometries without the adverse off stagnation point heating seen here..

6.1.3 Coupled Vehicle/Trajectory Optimized Geometries

For lunar return, shapes with eccentric bases (either prolate or oblate) show

qualitative discrepancies in heating profile when compared to the modified New-

tonian solutions. A close examination of DPLR solutions show that any possible

gains from increased surface area and higher altitude decelerations are wiped out by

changes in the flow-field introduced by stretched geometries. As such, there is reason

to suspect that these eccentric shapes fall outside the realm of the semi-empirical
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correlations used in the lower-order method for heat fluxes. Simply, the correlations

are not valid for every class of blunt-body heat shield created by the lower-order

optimization process. These relations can, however, be improved through the use

of a larger data set of wind tunnel data and CFD solutions (like those seen in this

thesis) that includes more shapes with eccentric bases and sharp edges. For Mars

return, errors associated with non-continuum flow (manifesting itself in increased

dissipation) and eccentricity effects make it difficult to make any concrete conclu-

sions regarding the merits of one design over another. These errors need to be

quantified and accounted for before any such study may continue.

Furthermore, it can be seen that it is difficult to produce heat shields that

show a great deal of improvement, for both lunar and Mars return, over one with

geometric parameters similar to that which is currently in consideration for the

Orion CEV capsule. Any advantages gained by using a more novel shape will, more

than likely, be canceled out by the ease of manufacturing and vehicle integration for

an Apollo-like spherical segment design. Whether intended or not, it would appear

that a simple spherical segment with θs = 25.0◦ is indeed an ideal shape for earth

entry at super orbital velocities.

6.2 Future Work

Future additions to this work fall into four categories: 1) better radiation

modeling, 2) material response, 3)turbulence, and 4) other atmospheres for entry.

The heating profile for a blunt-body heat shield can not accurately be calculated
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unless convection and radiation are fully coupled. Loosely coupling the two with

NEQAIR and DPLR is possible with the technique described in Chapter 2, but

future versions of DPLR will contain internal methods for dealing with shock layer

radiation, allowing for much simpler acquisition of fully coupled solutions without

the high computation costs associated with using NEQAIR. Materials play a ma-

jor role, through ablation, in determining the heat actually felt by the vehicle. All

materials will undergo sometime sort of chemical change when exposed to the ex-

treme environments experienced during re-entry. Future CFD solutions, and the

lower-order optimized geometries for that matter, need to take into account how

chemical changing in a vehicle’s surface will change the resulting flow-field around

a next generation space capsule (i.e. the gas model changes as the environment is

no longer just air) if truly accurate solutions are desired.

All CFD solutions in this work assume a laminar flow. It is not entirely obvious

weather or not earth entering heat shields will experience local regions of turbulent

flow. To that end, it would be germane to adopt a some sort of transition criteria,

based on flow physics, and then apply turbulence models, within DPLR, to those

regions to correctly model the flow. This transition criteria might be more pertinent

in different planetary atmospheres such as Mars, where turbulent flow is much more

likely to exist. Furthermore, since a next generation space capsule will be used

for missions that require entry to the atmospheres of other planets, it would be

interesting to see how the shapes studied in this work, optimized for earth entry,

measure up in different environments, like that on Mars.
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6.3 Concluding Remarks

At this point, it is important to try to understand the computational results

compiled in this work in a more general perspective. The purpose of conducting

high fidelity CFD on geometries optimized using a low-order approach was to evalu-

ate how well that analytical method could predict the extreme aerothermodynamic

environments these geometries would experience on a real mission. To that end,

the CFD results show that the aerodynamic model used by the low-order approach

does a more than adequate job in predicting the proper pressure distribution on

the heat shield surface, while the correlations used to predict the thermodynamic

environment prove poor, even in circumstances for which they were derived for (i.e.

spheres). Also, these stagnation point heating models fail to pick up areas of high

heat flux on other parts of the vehicle’s surface, highlighting a further shortcom-

ing of the lower-order analytical approach. All of these conclusions were, to some

extent, expected; but the process by which they were obtained implies possible im-

provements for the lower-order approach. Namely, that the empirical relations used

to predict heating rates need to be replaced with improved correlations with a more

physical basis and that the geometric constraints used in the optimization process

need to be further limited in order to avoid large local off-stagnation point heat

fluxes.

Furthermore, the results gathered in this work allow for some conclusions

to be made about the blunt-body design space in general. Presently, there are

very few physical data points for blunt-body entry at extra-planetary velocities.
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As such, the empirical relations derived from those data points break down when

they are used for unconventional shapes. In order to improve these correlations,

more data must be obtained through flight and ground tests as well as through

further computational simulations. That way, curve fits derived from this larger

data set will truly reflect the full range of possible outcomes. Finally, the lower-

order method sought to show that more complicated shapes could provide large gains

over the simpler, axisymmetric geometries. However, in practice, the more complex

shapes introduce aspects into the blunt-body flow field (i.e. high off stagnation point

heating and other elliptical effects) that do not manifest themselves with the simpler

shapes. Sometimes the simpler approach can be the better one; and, certainly in

this work, it can be seen that choosing a simpler shape (in this case a 25◦ spherical

segment) can be more advantageous, in many respects, than a more complicated

design.
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