Geography

Permanent URI for this communityhttp://hdl.handle.net/1903/2242

Browse

Search Results

Now showing 1 - 10 of 21
  • Item
    Operational Automatic Remote Sensing Image Understanding Systems: Beyond Geographic Object-Based and Object-Oriented Image Analysis (GEOBIA/GEOOIA). Part 1: Introduction
    (MDPI, 2012-09-14) Baraldi, Andrea; Boschetti, Luigi
    According to existing literature and despite their commercial success, state-of-the-art two-stage non-iterative geographic object-based image analysis (GEOBIA) systems and three-stage iterative geographic object-oriented image analysis (GEOOIA) systems, where GEOOIA ⊃ GEOBIA, remain affected by a lack of productivity, general consensus and research. To outperform the degree of automation, accuracy, efficiency, robustness, scalability and timeliness of existing GEOBIA/GEOOIA systems in compliance with the Quality Assurance Framework for Earth Observation (QA4EO) guidelines, this methodological work is split into two parts. The present first paper provides a multi-disciplinary Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis of the GEOBIA/GEOOIA approaches that augments similar analyses proposed in recent years. In line with constraints stemming from human vision, this SWOT analysis promotes a shift of learning paradigm in the pre-attentive vision first stage of a remote sensing (RS) image understanding system (RS-IUS), from sub-symbolic statistical model-based (inductive) image segmentation to symbolic physical model-based (deductive) image preliminary classification. Hence, a symbolic deductive pre-attentive vision first stage accomplishes image sub-symbolic segmentation and image symbolic pre-classification simultaneously. In the second part of this work a novel hybrid (combined deductive and inductive) RS-IUS architecture featuring a symbolic deductive pre-attentive vision first stage is proposed and discussed in terms of: (a) computational theory (system design); (b) information/knowledge representation; (c) algorithm design; and (d) implementation. As proof-of-concept of symbolic physical model-based pre-attentive vision first stage, the spectral knowledge-based, operational, near real-time Satellite Image Automatic Mapper™ (SIAM™) is selected from existing literature. To the best of these authors’ knowledge, this is the first time a symbolic syntactic inference system, like SIAM™, is made available to the RS community for operational use in a RS-IUS pre-attentive vision first stage, to accomplish multi-scale image segmentation and multi-granularity image pre-classification simultaneously, automatically and in near real-time.
  • Item
    Operational Automatic Remote Sensing Image Understanding Systems: Beyond Geographic Object-Based and Object-Oriented Image Analysis (GEOBIA/GEOOIA). Part 2: Novel system Architecture, Information/Knowledge Representation, Algorithm Design and Implementation
    (MDPI, 2012-09-20) Baraldi, Andrea; Boschetti, Luigi
    According to literature and despite their commercial success, state-of-the-art two-stage non-iterative geographic object-based image analysis (GEOBIA) systems and three-stage iterative geographic object-oriented image analysis (GEOOIA) systems, where GEOOIA ⊃ GEOBIA, remain affected by a lack of productivity, general consensus and research. To outperform the Quality Indexes of Operativeness (OQIs) of existing GEOBIA/GEOOIA systems in compliance with the Quality Assurance Framework for Earth Observation (QA4EO) guidelines, this methodological work is split into two parts. Based on an original multi-disciplinary Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis of the GEOBIA/GEOOIA approaches, the first part of this work promotes a shift of learning paradigm in the pre-attentive vision first stage of a remote sensing (RS) image understanding system (RS-IUS), from sub-symbolic statistical model-based (inductive) image segmentation to symbolic physical model-based (deductive) image preliminary classification capable of accomplishing image sub-symbolic segmentation and image symbolic pre-classification simultaneously. In the present second part of this work, a novel hybrid (combined deductive and inductive) RS-IUS architecture featuring a symbolic deductive pre-attentive vision first stage is proposed and discussed in terms of: (a) computational theory (system design), (b) information/knowledge representation, (c) algorithm design and (d) implementation. As proof-of-concept of symbolic physical model-based pre-attentive vision first stage, the spectral knowledge-based, operational, near real-time, multi-sensor, multi-resolution, application-independent Satellite Image Automatic Mapper™ (SIAM™) is selected from existing literature. To the best of these authors’ knowledge, this is the first time a symbolic syntactic inference system, like SIAM™, is made available to the RS community for operational use in a RS-IUS pre-attentive vision first stage, to accomplish multi-scale image segmentation and multi-granularity image pre-classification simultaneously, automatically and in near real-time.
  • Item
    Long-Term Record of Sampled Disturbances in Northern Eurasian Boreal Forest from Pre-2000 Landsat Data
    (MDPI, 2014-06-27) Chen, Dong; Loboda, Tatiana; Channan, Saurabh; Hoffman-Hall, Amanda
    Stand age distribution is an important descriptor of boreal forest structure, which is directly linked to many ecosystem processes including the carbon cycle, the land–atmosphere interaction and ecosystem services, among others. Almost half of the global boreal biome is located in Russia. The vast extent, remote location, and limited accessibility of Russian boreal forests make remote sensing the only feasible approach to characterize these forests to their full extent. A wide variety of satellite observations are currently available to monitor forest change and infer its structure; however, the period of observations is mostly limited to the 2000s era. Reconstruction of wall-to-wall maps of stand age distribution requires merging longer-term site observations of forest cover change available at the Landsat scale at a subset of locations in Russia with the wall-to-wall coverage available from coarse resolution satellites since 2000. This paper presents a dataset consisting of a suite of multi-year forest disturbance samples and samples of undisturbed forests across Russia derived from Landsat Thematic Mapper and Enhanced Thematic Mapper Plus images from 1985 to 2000. These samples provide crucial information regarding disturbance history in selected regions across the Russian boreal forest and are designed to serve as a training and/or validation dataset for coarse resolution data products. The overall accuracy and Kappa coefficient for the entire sample collection was found to be 83.98% and 0.83%, respectively. It is hoped that the presented dataset will benefit subsequent studies on a variety of aspects of the Russian boreal forest, especially in relation to the carbon budget and climate.
  • Item
    Environmental and Anthropogenic Degradation of Vegetation in the Sahel from 1982 to 2006
    (MDPI, 2016-11-13) Rishmawi, Khaldoun; Prince, Stephen D.
    There is a great deal of debate on the extent, causes, and even the reality of land degradation in the Sahel. Investigations carried out before approximately 2000 using remote sensing data suggest widespread reductions in biological productivity, while studies extending beyond 2000 consistently reveal a net increase in vegetation production, strongly related to the recovery of rainfall following the extreme droughts of the 1970s and 1980s, and thus challenging the notion of widespread, long-term, subcontinental-scale degradation. Yet, the spatial variations in the rates of vegetation recovery are not fully explained by rainfall trends. It is hypothesized that, in addition to rainfall, other meteorological variables and human land use have contributed to vegetation dynamics. Throughout most of the Sahel, the interannual variability in growing season ΣNDVIgs (measured from satellites, used as a proxy of vegetation productivity) was strongly related to rainfall, humidity, and temperature (mean r2 = 0.67), but with rainfall alone was weaker (mean r2 = 0.41). The mean and upper 95th quantile (UQ) rates of change in ΣNDVIgs in response to climate were used to predict potential ΣNDVIgs—that is, the ΣNDVIgs expected in response to climate variability alone, excluding any anthropogenic effects. The differences between predicted and observed ΣNDVIgs were regressed against time to detect any long-term (positive or negative) trends in vegetation productivity. Over most of the Sahel, the trends did not significantly depart from what is expected from the trends in meteorological variables. However, substantial and spatially contiguous areas (~8% of the total area of the Sahel) were characterized by negative, and, in some areas, positive trends. To explore whether the negative trends were human-induced, they were compared with the available data of population density, land use, and land biophysical properties that are known to affect the susceptibility of land to degradation. The spatial variations in the trends of the residuals were partly related to soils and tree cover, but also to several anthropogenic pressures.
  • Item
    Developing an Integrated Remote Sensing Based Biodiversity Index for Predicting Animal Species Richness
    (MDPI, 2018-05-10) Wu, Jinhui; Liang, Shunlin
    Many remote sensing metrics have been applied in large-scale animal species monitoring and conservation. However, the capabilities of these metrics have not been well compared and assessed. In this study, we investigated the correlation of 21 remote sensing metrics in three categories with the global species richness of three different animal classes using several statistical methods. As a result, we developed a new index by integrating several highly correlated metrics. Of the 21 remote sensing metrics analyzed, evapotranspiration (ET) had the greatest impact on species richness on a global scale (explained variance: 52%). The metrics with a high explained variance on the global scale were mainly in the energy/productivity category. The metrics in the texture category exhibited higher correlation with species richness at regional scales. We found that radiance and temperature had a larger impact on the distribution of bird richness, compared to their impacts on the distributions of both amphibians and mammals. Three machine learning models (i.e., support vector machine, random forests, and neural networks) were evaluated for metric integration, and the random forest model showed the best performance. Our newly developed index exhibited a 0.7 explained variance for the three animal classes’ species richness on a global scale, with an explained variance that was 20% higher than any of the univariate metrics.
  • Item
    Impact of the Revisit of Thermal Infrared Remote Sensing Observations on Evapotranspiration Uncertainty—A Sensitivity Study Using AmeriFlux Data
    (MDPI, 2019-03-08) Guillevic, Pierre C.; Olioso, Albert; Hook, Simon J.; Fisher, Joshua B.; Lagouarde, Jean-Pierre; Vermote, Eric F.
    Thermal infrared remote sensing observations have been widely used to provide useful information on surface energy and water stress for estimating evapotranspiration (ET). However, the revisit time of current high spatial resolution (<100 m) thermal infrared remote sensing systems, sixteen days for Landsat for example, can be insufficient to reliably derive ET information for water resources management. We used in situ ET measurements from multiple Ameriflux sites to (1) evaluate different scaling methods that are commonly used to derive daytime ET estimates from time-of-day observations; and (2) quantify the impact of different revisit times on ET estimates at monthly and seasonal time scales. The scaling method based on a constant evaporative ratio between ET and the top-of-atmosphere solar radiation provided slightly better results than methods using the available energy, the surface solar radiation or the potential ET as scaling reference fluxes. On average, revisit time periods of 2, 4, 8 and 16 days resulted in ET uncertainties of 0.37, 0.55, 0.73 and 0.90 mm per day in summer, which represented 13%, 19%, 23% and 31% of the monthly average ET calculated using the one-day revisit dataset. The capability of a system to capture rapid changes in ET was significantly reduced for return periods higher than eight days. The impact of the revisit on ET depended mainly on the land cover type and seasonal climate, and was higher over areas with high ET. We did not observe significant and systematic differences between the impacts of the revisit on monthly ET estimates that are based on morning or afternoon observations. We found that four-day revisit scenarios provided a significant improvement in temporal sampling to monitor surface ET reducing by around 40% the uncertainty of ET products derived from a 16-day revisit system, such as Landsat for instance.
  • Item
    QUANTIFYING FIRE-INDUCED SURFACE FORCING IN SIBERIAN LARCH FORESTS
    (2017) Chen, Dong; Loboda, Tatiana V.; Geography; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Wildfires are a common disturbance agent in the global boreal forests. In the North American boreal forests, they have been shown to exert a strong cooling effect through post-fire changes in surface albedo that has a larger overall impact on the climate system than associated carbon emissions. However, these findings are not directly applicable to the Siberian larch forests, a major component of the boreal biome where species composition are dominated by a deciduous needleleaf species and fire regimes are characterized by the common occurrence of both stand-replacing and less-severe surface fires. This dissertation quantifies the post-fire surface forcing imposed by both fire types in these forests over 14 years since fire, and determines that both surface and stand replacing fires impose cooling effects through increased albedo during snow season. The magnitude of the cooling effect from stand replacing fires is much larger than that of surface fires, and this is likely a consequence of higher levels of canopy damage after stand-replacing fires. At its peak (~ year 11 after fire occurrence), the cooling magnitude is similar to that of the North American boreal fires. Strong cooling effect and the wide-spread occurrence of stand-replacing fires lead to a net negative surface forcing over the entire region between 2002 and 2013. Based on the extended albedo trajectory which was made possible by developing a 24-year stand age map, it was shown that the cooling effect of stand-replacing fires lasts for more than 26 years. The overall cooling effect of surface fires is of lower magnitude and is likely indicative of damages not only to the canopies but also the shrubs in the understory. Based on the identified difference in their influences on post-fire energy budget, this dissertation also identified a remote sensing method to separate surface fires from stand-replacing fires in Siberian larch forests with an 88% accuracy. The insights gained from this dissertation will allow for accurate representation of wildfires in the regional or global climate models in the future.
  • Item
    A Spatial-Temporal Analysis of Wetland Loss and Section 404 Permitting on the Delmarva Peninsula from 1980 to to 2010
    (2017) Stubbs, Quentin A.; Yeo, In-Young; Geography; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Geospatial approaches for wetland change analyses have emphasized the evaluation of landscape change on a local level, but have often neglected to examine and integrate regional trends and patterns of land use and land cover change as well as the impacts of wetland management policies. This study attempts to bridge the gaps by integrating a geospatial assessment of land cover change and a geostatistical analysis of the physical and anthropogenic drivers of wetland change. The aim is to demonstrate how urban development, conservation, and climate change policy decisions influenced wetland change trends and patterns on the Delmarva Peninsula from 1980 to 2010. Historical data on the nine counties on the Delmarva Peninsula illustrated the dynamism of population growth, sprawl, and different wetland management strategies. Data sets from the National Oceanic and Atmospheric Administration, the Chesapeake Bay Program, the U.S. Army Corps of Engineers, the U.S. Fish and Wildlife Service, and the U.S. Census Bureau, and other sources were gathered and assessed. A land cover database was developed and analyzed using geospatial techniques, such as cross tabulation matrices and hot spot density analyses, in order to quantify and locate land cover change between 1984 and 2010. The results highlighted that anthropogenic drivers such as urbanization and agriculture were associated with the loss of wetlands in coastal areas as well as in upland, forested, suburban areas that were at low risk to flooding, but required deforestation in order to expand residential and commercial development. The greatest quantity and percentage of loss occurred between 1992 and 2001, and it was likely the result of increases in tourism and suburban sprawl (e.g., the Housing Boom and roadway expansion). The majority of wetland loss tapered off in 2000, except on coastal areas suffering from sea level rise and shoreline erosion. The results also reinforced the need to address the negative impacts from certain activities related to agriculture and silviculture, which are exempt from Section 404 of the Clean Water Act, have on wetlands. Physical drivers and processes like inundation from sea level rise and soil erosion from surface runoff force communities to simultaneously adapt to multiple drivers of wetland loss and alteration. This study supports the hypothesis that an increase in development and wetland permitting indicates an increased a risk of wetland loss. In the end, the study demonstrates that geostatistical modelling techniques can be used to predict wetland loss, and that model performance and accuracy can be improved by reducing the multicollinearity of independent variables. Planners and policymakers can use these models to better understand the wetland locations that are at greatest risk to loss, as well as the drivers and landscape conditions that have the greatest influence on the probability of wetland loss.
  • Item
    Factors Influencing Remote Sensing Measurements of Winter Cover Crops
    (2016) Prabhakara, Kusuma; Justice, Christopher O; Geography; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Winter cover crops are an essential part of managing nutrient and sediment losses from agricultural lands. Cover crops lessen sedimentation by reducing erosion, and the accumulation of nitrogen in aboveground biomass results in reduced nutrient runoff. Winter cover crops are planted in the fall and are usually terminated in early spring, making them susceptible to senescence, frost burn, and leaf yellowing due to wintertime conditions. In addition to remote sensing imagery, advances have been made in the use of proximal sensors integrated with GPS for on-field measurements, and the comparability of such measurements between platforms, as well as based on processing level is important. Cover crop growth on six fields planted to barley, rye, ryegrass, triticale or wheat was measured over the 2012-2013 winter growing season. There was a strong relationship between the Normalized Difference Vegetation Index (NDVI) and percent groundcover (r2 =0.93) suggesting that date restrictions effectively eliminate yellowing vegetation from analysis. The Triangular Vegetation Index (TVI) was most accurate in estimating high ranges of biomass (r2=0.86), while NDVI did not experience a clustering of values in the low and medium biomass ranges but saturated in the higher range (>1500 kg/ha). Accounting for index saturation, senescence, and frost burn on leaves can greatly increase the accuracy of estimates of percent groundcover and biomass for winter cover crops. Surface reflectance measurements were more correlated with proximal sensors compared to top of atmosphere, with intercepts closer to zero, regression slopes nearer to the 1 to 1 line, and less variance between measured values. NDVI was highly correlated with percent vegetative groundcover, though surface reflectance products did not necessarily improve the relationships. When the Scattering for Arbitrarily Inclined Leaves (SAIL) model was used with measured field variables reflective of realistic winter cover crop scenarios, there were not large differences between NDVI despite differences in residue cover and moisture. At low LAI, NDVI is not capable of differentiating between residue and vegetative cover.
  • Item
    Tree Cover Variability in the District of Columbia
    (2013) Johnston, Andrew; Goward, Samuel N; Geography; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Urban forests are increasingly a focus of interest as urbanized populations grow and urban areas expand. Urban forests change as trees are planted, grow, die, and are removed. These processes alter a city's tree cover over time, but this inherent dynamism is poorly understood. Better understanding of how tree cover is a variable land cover component will enhance knowledge of the urban environment and provide new perspectives for management of urban resources. In this study, tree cover variability within a major urban center was observed over a 20 year period. Changes in tree cover proportion were measured in the District of Columbia between 1984-2004 utilizing highly calibrated satellite remote sensing data. Testing of alternate methodologies demonstrated that an approach utilizing support vector regression provided most consistent accuracy across land use types. Tree cover maps were validated using aerial photography imagery and data from field surveys. Between 1984-2004, the city-wide tree cover remained between 22.1(+/-2.9)% and 28.8(+/-2.9)% of total land surface area. The District of Columbia did not experience an overall increase or decrease in total tree canopy area. Spatial patterns of tree cover variability were investigated to identify local scale changes in tree cover and connections with urban land use. Within the city, greatest variability was observed in low density residential zones. Tree cover proportion in these zones declined 7.4(+/-5.4)% in the years between 1990-1996 and recovered after 1996. Changes in tree cover were observed with high resolution aerial photography to determine relative contribution from fluctuation in the number of standing trees and changes in crown sizes. Land cover conversion removed dense tree cover from 50.2 hectares of the city's land surface between 1984-2004. The results demonstrate that tree cover variability in the District of Columbia occurred primarily within low population density residential areas. Neighborhoods within these zones were analyzed to identify factors correlated with tree cover. Implications of the results include enhanced understanding of the possible impact of urban forest management, and how a focus on low density residential zones is appropriate in setting goals for expansion of urban tree cover.