A. James Clark School of Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/1654

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Item
    Examining the Electrochemical Properties of Hybrid Aqueous/Ionic Liquid Solid Polymer Electrolytes through the Lens of Composition-Function Relationships
    (Wiley, 2023-07-04) Ludwig, Kyle B.; Correll-Brown, Riordan; Freidlin, Max; Garaga, Mounesha N.; Bhattacharyya, Sahana; Gonzales, Patricia M.; Cresce, Arthur V.; Greenbaum, Steven; Wang, Chunsheng; Kofinas, Peter
    Solid polymer electrolytes (SPEs) have the potential to meet evolving Li-ion battery demands, but for these electrolytes to satisfy growing power and energy density requirements, both transport properties and electrochemical stability must be improved. Unfortunately, improvement in one of these properties often comes at the expense of the other. To this end, a “hybrid aqueous/ionic liquid” SPE (HAILSPE) which incorporates triethylsulfonium-TFSI (S2,2,2) or N-methyl-N-propylpyrrolidinium-TFSI (Pyr1,3) ionic liquid (IL) alongside H2O and LiTFSI salt to simultaneously improve transport and electrochemical stability is studied. This work focuses on the impact of HAILSPE composition on electrochemical performance. Analysis shows that an increase in LiTFSI content results in decreased ionic mobility, while increasing IL and water content can offset its impact. pfg-NMR results reveal that preferential lithium-ion transport is present in HAILSPE systems. Higher IL concentrations are correlated with an increased degree of passivation against H2O reduction. Compared to the Pyr1,3 systems, the S2,2,2 systems exhibit a stronger degree of passivation due to the formation of a multicomponent interphase layer, including LiF, Li2CO3, Li2S, and Li3N. The results herein demonstrate the superior electrochemical stability of the S2,2,2 systems compared to Pyr1,3 and provide a path toward further enhancement of HAILSPE performance via composition optimization.
  • Thumbnail Image
    Item
    Solvent-Free Electrolyte for High-Temperature Rechargeable Lithium Metal Batteries
    (Wiley, 2023-05-08) Phan, An L.; Jayawardana, Chamithri; Le, Phung ML; Zhang, Jiaxun; Nan, Bo; Zhang, Weiran; Lucht, Brett L.; Hou, Singyuk; Wang, Chunsheng
    The formation of lithiophobic inorganic solid electrolyte interphase (SEI) on Li anode and cathode electrolyte interphase (CEI) on the cathode is beneficial for high-voltage Li metal batteries. However, in most liquid electrolytes, the decomposition of organic solvents inevitably forms organic components in the SEI and CEI. In addition, organic solvents often pose substantial safety risks due to their high volatility and flammability. Herein, an organic-solvent-free eutectic electrolyte based on low-melting alkali perfluorinated-sulfonimide salts is reported. The exclusive anion reduction on Li anode surface results in an inorganic, LiF-rich SEI with high capability to suppress Li dendrite, as evidenced by the high Li plating/stripping CE of 99.4% at 0.5 mA cm−2 and 1.0 mAh cm−2, and 200-cycle lifespan of full LiNi0.8Co0.15Al0.05O2 (2.0 mAh cm−2) || Li (20 µm) cells at 80 °C. The proposed eutectic electrolyte is promising for ultrasafe and high-energy Li metal batteries.
  • Thumbnail Image
    Item
    High-Performance Lithium Metal Batteries Enabled by a Fluorinated Cyclic Ether with a Low Reduction Potential
    (Wiley, 2023-01-02) Wu, Min; Wang, Zeyi; Zhang, Weiran; Jayawardana, Chamithri; Li, Yue; Chen, Fu; Nan, Bo; Lucht, Brett L.; Wang, Chunsheng
    Electrolyte engineering is crucial for developing high-performance lithium metal batteries (LMB). Here, we synthesized two cosolvents methyl bis(fluorosulfonyl)imide (MFSI) and 3,3,4,4-tetrafluorotetrahydrofuran (TFF) with significantly different reduction potentials and add them into LiFSI-DME electrolytes. The LiFSI/TFF-DME electrolyte gave an average Li Coulombic efficiency (CE) of 99.41 % over 200 cycles, while the average Li CEs for MFSI-based electrolyte is only 98.62 %. Additionally, the TFF-based electrolytes exhibited a more reversible performance than the state-of-the-art fluorinated 1,4-dimethoxylbutane electrolyte in both Li||Cu half-cell and anode-free Cu||LiNi0.8Mn0.1Co0.1O2 full cell. More importantly, the decomposition product from bis(fluorosulfonyl)imide anion could react with ether solvent, which destroyed the SEI, thus decreasing cell performance. These key discoveries provide new insights into the rational design of electrolyte solvents and cosolvents for LMB.
  • Thumbnail Image
    Item
    Salt-in-Salt Reinforced Carbonate Electrolyte for Li Metal Batteries
    (Wiley, 2022-08-30) Liu, Sufu; Zhang, Weiran; Wan, Hongli; Zhang, Jiaxun; Xu, Jijian; Rao, Jiancun; Deng, Tao; Hou, Singyuk; Nan, Bo; Wang, Chunsheng
    The instability of carbonate electrolyte with metallic Li greatly limits its application in high-voltage Li metal batteries. Here, a “salt-in-salt” strategy is applied to boost the LiNO3 solubility in the carbonate electrolyte with Mg(TFSI)2 carrier, which enables the inorganic-rich solid electrolyte interphase (SEI) for excellent Li metal anode performance and also maintains the cathode stability. In the designed electrolyte, both NO3− and PF6− anions participate in the Li+-solvent complexes, thus promoting the formation of inorganic-rich SEI. Our designed electrolyte has achieved a superior Li CE of 99.7 %, enabling the high-loading NCM811||Li (4.5 mAh cm−2) full cell with N/P ratio of 1.92 to achieve 84.6 % capacity retention after 200 cycles. The enhancement of LiNO3 solubility by divalent salts is universal, which will also inspire the electrolyte design for other metal batteries.
  • Thumbnail Image
    Item
    Formation of LiF-rich Cathode-Electrolyte Interphase by Electrolyte Reduction
    (Wiley, 2022-04-08) Bai, Panxing; Ji, Xiao; Zhang, Jiaxun; Zhang, Weiran; Hou, Singyuk; Su, Hai; Li, Mengjie; Deng, Tao; Cao, Longsheng; Liu, Sufu; He, Xinzi; Xu, Yunhua; Wang, Chunsheng
    The capacityof transitionmetal oxide cathodefor Li-ionbatteriescan be furtherenhancedby increas-ing the chargingpotential.However,these high voltagecathodessufferfrom fast capacitydecaybecausethelargevolumechangeof cathodebreaksthe activematerialsand cathode-electrolyteinterphase(CEI),resultingin electrolytepenetrationinto brokenactivematerialsand continuousside reactionsbetweencath-ode and electrolytes.Herein,a robustLiF-richCEI wasformedby potentiostaticreductionof fluorinatedelec-trolyteat a low potentialof 1.7 V. By takingLiCoO2asa modelcathode,we demonstratethat the LiF-richCEImaintainsthe structuralintegrityand suppresseselectro-lyte penetrationat a high cut-offpotentialof 4.6 V. TheLiCoO2with LiF-richCEI exhibiteda capacityof198 mAhg
  • Thumbnail Image
    Item
    High-energy and low-cost membrane-free chlorine flow battery
    (Springer Nature, 2022-03-11) Hou, Singyuk; Chen, Long; Fan, Xiulin; Fan, Xiaotong; Ji, Xiao; Wang, Boyu; Cui, Chunyu; Chen, Ji; Yang, Chongyin; Wang, Wei; Li, Chunzhong; Wang, Chunsheng
    Grid-scale energy storage is essential for reliable electricity transmission and renewable energy integration. Redox flow batteries (RFB) provide affordable and scalable solutions for stationary energy storage. However, most of the current RFB chemistries are based on expensive transition metal ions or synthetic organics. Here, we report a reversible chlorine redox flow battery starting from the electrolysis of aqueous NaCl electrolyte and the as-produced Cl2 is extracted and stored in the carbon tetrachloride (CCl4) or mineral spirit flow. The immiscibility between the CCl4 or mineral spirit and NaCl electrolyte enables a membrane-free design with an energy efficiency of >91% at 10 mA/cm2 and an energy density of 125.7 Wh/L. The chlorine flow battery can meet the stringent price and reliability target for stationary energy storage with the inherently low-cost active materials (~$5/kWh) and the highly reversible Cl2/Cl− redox reaction.