A. James Clark School of Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/1654

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 10 of 5026
  • Item
    Adjoint-Based Projections for Quantifying Statistical Covariance near Stochastically Perturbed Limit Cycles and Tori
    (SIAM, 2025-05) Dankowicz, Harry; Ahsan, Zaid; Kuehn, Christian
    This paper presents a new boundary-value problem formulation for quantifying uncertainty induced by the presence of small Brownian noise near normally hyperbolic attracting periodic orbits (limit cycles) and quasiperiodic invariant tori of the deterministic dynamical systems obtained in the absence of noise. The formulation uses adjoints to construct a continuous family of transversal hyperplanes that are invariant under the linearized deterministic flow near the limit cycle or quasiperiodic invariant torus. The intersections with each hyperplane of stochastic trajectories that remain near the deterministic cycle or torus over intermediate times may be approximated by a Gaussian distribution whose covariance matrix can be obtained from the solution to the corresponding boundary-value problem. In the case of limit cycles, the analysis improves upon results in the literature through the explicit use of state-space projections, transversality constraints, and symmetry-breaking parameters that ensure uniqueness of the solution despite the lack of hyperbolicity along the limit cycle. These same innovations are then generalized to the case of a quasiperiodic invariant torus of arbitrary dimension. In each case, a closed-form solution to the covariance boundary-value problem is found in terms of a convergent series. The methodology is validated against the results of numerical integration for two examples of stochastically perturbed limit cycles and one example of a stochastically perturbed two-dimensional quasiperiodic invariant torus in $\mathbb{R}^2$, $\mathbb{R}^2\times S^1$, and $\mathbb{R}^2\times S^1$, respectively, for which explicit expressions may be found for the associated covariance functions using the proposed series solutions. Finally, an implementation of the covariance boundary-value problem in the numerical continuation package \textsc{coco} is applied to analyze the small-noise limit near a two-dimensional quasiperiodic invariant torus in a nonlinear deterministic dynamical system in $\mathbb{R}^4$ that does not support closed-form analysis. Excellent agreement with numerical evidence from stochastic time integration shows the potential for using deterministic continuation techniques to study the influence of stochastic perturbations for both autonomous and periodically excited deterministic vector fields.
  • Item
    Chemical Characterization of Urban Stormwater: Traditional and Emerging Contaminants
    (Elsevier, 2022-03) Pamuru, Sai Thejaswini; Forgione, Erica; Croft, Kristen; Kjellerup, Birthe V.; Davis, Allen P.
    Increases in urbanization have led to increased stormwater runoff and mobilization of pollutants from urban watersheds. Discharge of these pollutants often leads to contamination of receiving water bodies. Chemical characterization of urban stormwater is necessary to gain deeper insights into the ecological impacts of urban runoff and to evaluate parameters that influence possible treatment technologies. This study assessed stormwater event mean concentrations and particle size fractions from field studies reported in national/international stormwater quality databases (The National Stormwater Quality and The Best Management Practices databases) and peer-reviewed literature. This characterization of urban stormwater includes statistical evaluation of probability distribution, consideration of dissolved and particulate-bound pollutants and focuses on partitioning and speciation behavior. Solids, nutrients, metals, organic pollutants, and bacterial pathogen indicators were evaluated. A significant fraction of stormwater phosphorus, metals and organic pollutants are particle-bound. Results from the speciation of metals demonstrated that metals are predominantly present as either inner-sphere or electrostatic complexes with dissolved organic matter. This study provides a comprehensive overview of the myriad pollutants found in urban stormwater and provides a starting point for addressing ubiquitous and emerging contaminants. Finally, research needs for further detailed stormwater characterization were identified.
  • Item
    Nanoscale Mixed Ion-Electron Conducting NASICON-type Thin-Films: Lithium Titanium Phosphate via Atomic Layer Deposition
    (American Chemical Society, 2025) Fontecha, Daniela; Kozen, Alexander; Stewart, David M.; Hall, Alex T.; Cumings, John; Rubloff, Gary W.; Gregorczyk, Keith E.; Rubloff, Gary W.
    The attached data encompasses the raw data files and processed XPS data for the article “Nanoscale Mixed Ion-Electron Conducting NASICON-type Thin-Films: Lithium Titanium Phosphate via Atomic Layer Deposition
  • Item
    COMSOL models for working-electrode/solid-electrolyte under mechanical loadings
    (2025) Jung, Taeho; Song, Yueming; Valentino, Gianna M; Albertus, Paul
    The attached COMSOL models simulate the mechanical state of a working-electrode/solid-electrolyte system under the following loading conditions. * Scenario I - working electrode under out-of-plane uniaxial compression * Scenario II - solid electrolyte under in-plane uniaxial compression * Scenario III - solid electrolyte under pure shear
  • Item
    Impact of Polymeric Drops on Drops and Films of a Different but Miscible Polymer
    (2024) Bera, Arka; Das, Siddhartha; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The fluid mechanics of a liquid drop impacting on another stationery (or spreading) liquid drop or on a liquid film (of thickness comparable, or smaller, or larger than the impacting drop) has attracted significant attention over the past several years. Such problems represent interesting deviations from the more widely studied problems of liquid drops impacting on solid surfaces having different wettabilities with respect to the impacting drops. These deviations stem from the fact that the resting liquid (in the form of the drop or the film) itself undergoes deformation on account of the drop impact and can significantly affect the overall combined drop-drop or drop-film dynamics. The problem becomes even more intriguing depending on the rheology of the drop(s) and the film as well as the (im)miscibility of the impacting drop with the underlying drop or the film. Interestingly, the majority of such drop-impact-on-drop or drop-impact-on-film studies have considered Newtonian drop(s) and films, with little attention to polymeric drop(s) and films. This thesis aims to bridge that void by studying, using Direct Numerical Simulation (DNS) based computational methods, the impact-driven dynamics of one polymeric drop on another (different but miscible) polymeric drop or film. As specific examples, we consider two separate problems. In the first problem, we consider the impact of a PMMA (poly-methyl methacrylate) drop on a resting PVAc (polyvinyl acetate) drop as well as the impact of a PVAc drop on a resting PMMA drop. In the second problem, we consider the impact of a PMMA drop on a PVAc film as well as the impact of a PVAc drop on a PMMA film. For the first problem, the wettability of the resting drop (on the resting surface), the Weber number of the impacting drop, the relative surface tension values of the two polymeric liquids (PVAc and PMMA), and the miscibility (or how fast the two liquids mix) dictate the overall dynamics. PVAc has a large wettability on silicon (considered as the underlying solid substrate); as a result, during the problem of the PMMA drop impacting on the PVAc drop, the PVAc drop spreads significantly and the slow mixing of the two liquids ensures that the PMMA drop spreads as a thin film on top of the PVAc film (formed as the PVAc drop spreads quickly on silicon). Depending on the Weber number, such a scenario leads to the formation of transient liquid films (of multitudes of shapes) with stratified layers of PMMA (on top) and PVAc (on bottom) liquids. On the other hand, for the case of the PVAc drop impacting on the PMMA drop, a combination of the weaker spreading of the PMMA drop on silicon and the “engulfing” of the PMMA drop by the PVAc drop (stemming from the PVAc having a smaller surface tension than PMMA) ensures that the impacting PVAc drop covers the entire PMMA drop and itself interacts with the substrate giving rise to highly intriguing transient and stratified multi-polymeric liquid-liquid structures (such as core-shell structure with PMMA core and PVAc shell). For both these cases, we thoroughly discuss the dynamics by studying the velocity field, the concentration profiles (characterizing the mixing), the progression of the mixing front, and the capillary waves (resulting from the impact-driven imposition of the disturbance). In the second problem, we consider a drop of the PMMA (PVAc) impacting on a film of the PVAc (PMMA). In addition to the factors dictating the previous problem, the film thickness (considered to be either identical or smaller than the drop diameter) also governs the overall droplet-impact-driven dynamics. Here, the impact, being on the film, the dynamics is governed by the formation of crown (signifying the pre-splashing stage) and a deep cavity (the depth of which is dictated by the film thickness) on the resting film. In addition to quantifying these facets, we further quantify the problem by studying the velocity and the concentration fields, the capillary waves, and the progression of the mixing front. For the PMMA drop impacting on the thin film, a noticeable effect is the quick thinning of the PMMA drop on the PVAc film (or the impact-driven cavity formed on the PVAc film), which gives rise to a situation similar to the previous study (development of transient multi-polymeric-liquid structures with stratified polymeric liquid layers). For the case of the PVAc drop impacting on the PMMA film, the PVAc liquid “engulfs” the deforming PMMA film, and this in turn, reduces the depth of the cavity formed, the extent of thinning, and the amplitude of the generated capillary waves. All these fascinating phenomena get captured through the detailed DNS results that are provided. The specific problems considered in this thesis have been motivated by the situations often experienced during the droplet-based 3D printing processes (e.g., Aerosol jet printing or inkjet printing). In such printing applications, it is commonplace to find one polymeric drop interacting with an already deposited polymeric drop or a polymeric film (e.g., through the co-deposition of multiple materials during multi-material printing). The scientific background for explaining these specific scenarios routinely encountered in 3D printing problems, unfortunately, has been very limited. Our study aims to fill this gap. Also, the prospect of rapidly solidifying these polymeric systems (via methods such as in-situ curing) can enable us to visualize the formation of solidified multi-polymeric structures of different shapes (by rapidly solidifying the different transient multi-polymeric-liquid structures described above). Specifically, both PMMA and PVAc are polymers well-known to be curable using in-situ ultraviolet curing, thereby establishing the case where the present thesis also raises the potential of developing PMMA-PVAc multi-polymeric solid structures of various shapes and morphologies.
  • Item
    A CAUSAL INFORMATION FUSION MODEL FOR ASSESSING PIPELINE INTEGRITY IN THE PRESENCE OF GROUND MOVEMENT
    (2024) Schell, Colin Andrew; Groth, Katrina M; Reliability Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Pipelines are the primary transportation method for natural gas and oil in the United States making them critical infrastructure to maintain. However, ground movement hazards, such as landslides and ground subsidence, can deform pipelines and potentially lead to the release of hazardous materials. According to the Pipeline and Hazardous Materials Safety Administration (PHMSA), from 2004 to 2023, ground movement related pipeline failures resulted in $413M USD in damages. The dynamic nature of ground movement makes it necessary to collect pipeline and ground monitoring data and to actively model and predict pipeline integrity. Conventional stress-based methods struggle to predict pipeline failure in the presence of large longitudinal strains that result from ground movement. This has prompted many industry analysts to use strain-based design and assessment (SBDA) methods to manage pipeline integrity in the presence of ground movement. However, due to the complexity of ground movement hazards and their variable effects on pipeline deformation, current strain-based pipeline integrity models are only applicable in specific ground movement scenarios and cannot synthesize complementary data sources. This makes it costly and time-consuming for pipeline companies to protect their pipeline network from ground movement hazards. To close these gaps, this research made significant steps towards the development of a causal information fusion model for assessing pipeline integrity in a variety of ground movement scenarios that result in permanent ground deformation. We developed a causal framework that categorizes and describes how different risk-influencing factors (RIFs) affect pipeline reliability using academic literature, joint industry projects, PHMSA projects, pipeline data, and input from engineering experts. This framework was the foundation of the information fusion model which leverages SBDA methods, Bayesian network (BN) models, pipeline monitoring data, and ground monitoring data to calculate the probability of failure and the additional longitudinal strain needed to fail the pipeline. The information fusion model was then applied to several case studies with different contexts and data to compare model-based recommendations to the actions taken by decision makers. In these case studies, the proposed model leveraged the full extent of data available at each site and produced similar conclusions to those made by decision makers. These results demonstrate that the model could be used in a variety of ground movement scenarios that result in permanent ground deformation and exemplified the comprehensive insights that come from using an information fusion approach for assessing pipeline integrity. The proposed model lays the foundation for the development of advanced decision making tools that can enable operators to identify at-risk pipeline segments that require site specific integrity assessments and efficiently manage the reliability of their pipelines in the presence of ground movement.
  • Item
    Automated Management of Network Slices with Service Guarantees
    (2024) Nikolaidis, Panagiotis; Baras, John; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Future mobile networks are expected to support a diverse set of applications including high-throughput video streaming, delay-sensitive augmented reality applications, and critical control traffic for autonomous driving. Unfortunately, existing networks do not have the required management mechanisms to handle this complex mix of traffic efficiently. At the same time, however, there is a significant effort from both industry and academia to make networks more open and programmable, leading to the emergence of software-defined networking, network function virtualization, and packet-forwarding programming languages. Moreover, several organisations such as the Open Networking Foundation were founded to facilitate innovation and lower the entry barriers in the mobile networking industry. In this setting, the concept of network slicing emerged which involves the partitioning of the mobile network into virtual networks that are tailored for specific applications. Each network slice needs to provide premium service to its users as specified in a service level agreement between the mobile network operator and the customer. The deployment of network slices has been largely realized thanks to network function virtualization. However, little progress has been made on mechanisms to efficiently share the network resources among them. In this dissertation, we develop such mechanisms for the licensed spectrum at the base station, a scarce resource that operators obtain through competitive auctions. We propose a system architecture composed of two new network functions; the bandwidth demand estimator and the network slice multiplexer. The bandwidth demand estimator monitors the traffic of the network slice and outputs the amount of bandwidth currently needed to deliver the desired quality of service. The network slice multiplexer decides which bandwidth demands to accept when the available bandwidth does not suffice for all the network slices. A key feature of this architecture is the separation of the demand estimation task from the contention resolution task. This separation makes the architecture scalable for a large number of network slices. It also allows the mobile network operator to charge fairly each customer based on their bandwidth demands. In contrast, the most common approach in the literature is to learn online how to split the available resources among the slices to maximize a total network utility. However, this approach is neither scalable nor suitable for service level agreements. The dissertation contributes several algorithms to realize the proposed architecture and provisioning methods to guarantee the fulfillment of the service level agreements. To satisfypacket delay requirements, we develop a bandwidth demand estimator based on queueing theory and online learning. To share resources efficiently even in the presence of traffic anomalies, we develop a network slice multiplexer based on the Max-Weight algorithm and hypothesis testing. We implement and test the proposed algorithms on network simulators and 5G testbeds to showcase their efficiency in realistic settings. Overall, we present a scalable architecture that is robust to traffic anomalies and reduces the bandwidth needed to serve multiple network slices.
  • Item
    ENGINEERING TARGETED LIGHT ACTIVATABLE NANOPLATFORMS TO MANAGE RECURRENT CANCERS
    (2024) Pang, Sumiao; Huang, Huang Chiao HH; Bioengineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Cancer recurrence poses a significant challenge in various malignancies that adverselyaffect long-term survival and quality of life. Glioblastoma (GBM) and ovarian cancer exhibit particularly high recurrence rates. For GBM, tumor recurrence is nearly universal (90%) within 10 months post initial treatment due to its invasive characteristics, limited delivery of therapeutic agents, and persistent drug resistance, resulting in a 5-year survival rate of <10%. While standard chemotherapy and surgery can temporarily alleviate symptoms for both diseases, there has been no significant improvement in long-term disease management or survival extension over several decades. Therefore, it is critical to develop targeted therapies that integrates well with current standards of care strategies. Photomedicine is a promising treatment modality, and the two main phototherapies are photodynamic therapy (PDT) which involves photosensitizer administration followed by light activation resulting in non-thermal chemical damage and photothermal therapy (PTT) which involves exogenous or endogenous sensitizing agents followed by light activation resulting in thermal damage. Clinical applications of both modalities have shown its feasibility and safety; however, they face challenges due to (i) limited cancer selectivity, (ii) heterogenous treatment response, and (iii) low monotherapy treatment efficacy. Leveraging strategic therapeutic targets to advance the current sensitizing agents for targeted delivery is a potential solution to overcome these limitations. The overall objective of this dissertation is to advance and evaluate targeted light-activatable nanoplatforms for phototherapy delivery with considerations for the current clinical workflow of GBM and advanced ovarian cancer. This is achieved through the following goals, (1) engineering a novel Fn14 receptor-directed gold nanorods (DART-GNRs) to assess selectivity and PTT efficacy for GBM, and (2) evaluate safety and long-term efficacy of targeted light-activatable multi-agent nanoplatform (tLAMP) to deliver targeted PDT for peritoneal carcinomatosis. First, this work establishes a reproducible synthesis protocol for DART-GNRs, characterizes its photothermal properties, and demonstrate high selectivity towards the Fn14 receptor of cancer cells. Second half of this dissertation established and investigated a two-fiber tissue optical property (TOP) monitoring method for liquid phantoms and for peritoneal carcinomatosis mouse model to enable safer light dosimetry during PDT, established an irinotecan active loading method to reproducibly synthesize tLAMP, and determined tLAMP tumor nodule penetration depth for enhanced targeted PDT combination therapy with adjuvant chemotherapy to enhance long-term survival for ovarian cancer.
  • Item
    LENGTH-SCALE DEPENDENCE OF VISCOPLASTIC PROPERTIES OF SILVER SINTER REVEALED BY INDENTATION TESTING AND MODELING
    (2024) Leslie, David; Dasgupta, Abhijit; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This doctoral dissertation research focuses on using a combination of indentation testing and modeling to characterize the creep behavior of heterogeneous silver sinter at different temperatures, using multiple indenter sizes to interrogate length-scale effects. The measured steady-state creep deformation is characterized with three different modeling approaches, that rely on: (i) conventional deviatoric creep potential; (ii) pressure-sensitive Drucker-Prager creep potential; and (iii) length-scale dependent deviatoric creep potential. The creep flow rule for all three cases is Norton’s power-law creep. The materials in this study are from a family of sintered silver materials used for interconnects and die-attach in high-temperature electronics and for conductor traces in printed electronics. The dissertation focuses on identifying and quantifying the length-scale dependence presented by sintered materials due to their non-homogeneous morphology. Testing consists of constant-force indentations using spherical indenters of two different radii at three different temperatures: 25°C, 75°C, and 125°C. The indentation results were first analyzed using two different post-processing methods: an empirical approach with closed-form models (CFM) and a computational FEA approach based on classical continuum mechanics. Differences found between the CFM and numerical (FEA) analyses, while significant at room temperature, reduce with temperature. Both models reveal that indenters of different radii cause significantly different viscoplastic behavior. This dependence on tip radius increases with temperature The research was extended to examine two second-order influences of the metallic agglomerated phase and the discontinuous compliant phase of the microstructure of sintered silver on its viscoplastic behavior: (i) dependence on hydrostatic stress; (ii) dependence on microstructural length-scale. The aim of incorporating the pressure-sensitive modeling was to investigate what effect the intrinsic compressive hydrostatic stress in indentation tests might have on the measured viscoplastic properties. Results from using the Drucker-Prager creep model further confirmed the increasing dependence on length-scale with temperature. The length-scale dependence seen in all the above results is investigated and quantified with the help of a simplified strain-gradient viscoplastic model. This modeling approach is motivated by the conventional mechanism-based strain gradient (CMSG) model that is widely used in plasticity theory to quantify length-scale effects. The characteristic length-scale metric in this problem is presented by the agglomerate size distribution in the sintered material and is quantified in this study with ‘watershed analysis’ of cross-sectional features observed via electron microscopy. This discrete length scale is believed to cause the variations in the observed creep response when queried with indenters of different radii, because of the different strain gradients produced by the two different indenters. The length-scale dependence is incorporated in a strain-gradient viscoplastic constitutive model suitable for finite element modeling of deformation fields containing strong strain-gradients (e.g. in the die attach layer in microelectronics chip assembly). Finally, a procedure is proposed, to incorporate the scale-dependence in the empirical closed-form approach, currently available in the literature, for extracting viscoplastic properties from indentation tests. This approach provides corrected model constants for the strain-gradient viscoplastic model, using simple closed-form equations instead of expensive finite element modeling.