College of Agriculture & Natural Resources

Permanent URI for this communityhttp://hdl.handle.net/1903/1598

The collections in this community comprise faculty research works, as well as graduate theses and dissertations.

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Activation of the RpoN-RpoS regulatory pathway during the enzootic life cycle of Borrelia burgdorferi
    (Springer Nature, 2012-03-23) Ouyang, Zhiming; Narasimhan, Sukanya; Neelakanta, Girish; Kumar, Manish; Pal, Utpal; Fikrig, Erol; Norgard, Michael V
    The maintenance of Borrelia burgdorferi in its complex tick-mammalian enzootic life cycle is dependent on the organism's adaptation to its diverse niches. To this end, the RpoN-RpoS regulatory pathway in B. burgdorferi plays a central role in microbial survival and Lyme disease pathogenesis by up- or down-regulating the expression of a number of virulence-associated outer membrane lipoproteins in response to key environmental stimuli. Whereas a number of studies have reported on the expression of RpoS and its target genes, a more comprehensive understanding of when activation of the RpoN-RpoS pathway occurs, and when induction of the pathway is most relevant to specific stage(s) in the life cycle of B. burgdorferi, has been lacking. Herein, we examined the expression of rpoS and key lipoprotein genes regulated by RpoS, including ospC, ospA, and dbpA, throughout the entire tick-mammal infectious cycle of B. burgdorferi. Our data revealed that transcription of rpoS, ospC, and dbpA is highly induced in nymphal ticks when taking a blood meal. The RpoN-RpoS pathway remains active during the mammalian infection phase, as indicated by the sustained transcription of rpoS and dbpA in B. burgdorferi within mouse tissues following borrelial dissemination. However, dbpA transcription levels in fed larvae and intermolt larvae suggested that an additional layer of control likely is involved in the expression of the dbpBA operon. Our results also provide further evidence for the downregulation of ospA expression during mammalian infection, and the repression of ospC at later phases of mammalian infection by B. burgdorferi. Our study demonstrates that the RpoN-RpoS regulatory pathway is initially activated during the tick transmission of B. burgdorferi to its mammalian host, and is sustained during mammalian infection.
  • Thumbnail Image
    Item
    BB0324 and BB0028 are constituents of the Borrelia burgdorferi β-barrel assembly machine (BAM) complex
    (Springer Nature, 2012-04-20) Lenhart, Tiffany R; Kenedy, Melisha R; Yang, Xiuli; Pal, Utpal; Akins, Darrin R
    Similar to Gram-negative bacteria, the outer membrane (OM) of the pathogenic spirochete, Borrelia burgdorferi, contains integral OM-spanning proteins (OMPs), as well as membrane-anchored lipoproteins. Although the mechanism of OMP biogenesis is still not well-understood, recent studies have indicated that a heterooligomeric OM protein complex, known as BAM (β-barrel assembly machine) is required for proper assembly of OMPs into the bacterial OM. We previously identified and characterized the essential β-barrel OMP component of this complex in B. burgdorferi, which we determined to be a functional BamA ortholog. In the current study, we report on the identification of two additional protein components of the B. burgdorferi BAM complex, which were identified as putative lipoproteins encoded by ORFs BB0324 and BB0028. Biochemical assays with a BamA-depleted B. burgdorferi strain indicate that BB0324 and BB0028 do not readily interact with the BAM complex without the presence of BamA, suggesting that the individual B. burgdorferi BAM components may associate only when forming a functional BAM complex. Cellular localization assays indicate that BB0324 and BB0028 are OM-associated subsurface lipoproteins, and in silico analyses indicate that BB0324 is a putative BamD ortholog. The combined data suggest that the BAM complex of B. burgdorferi contains unique protein constituents which differ from those found in other proteobacterial BAM complexes. The novel findings now allow for the B. burgdorferi BAM complex to be further studied as a model system to better our understanding of spirochetal OM biogenesis in general.
  • Thumbnail Image
    Item
    Characterization of a Chikungunya virus strain isolated from banked patients’ sera
    (Springer Nature, 2016-09-02) Chalaem, Pattra; Chusri, Sarunyou; Fernandez, Stefan; Chotigeat, Wilaiwan; Anguita, Juan; Pal, Utpal; Promnares, Kamoltip
    Chikungunya virus (CHIKV) is a prevalent mosquito-borne pathogen that is emerging in many parts of the globe causing significant human morbidity. Here, we report the isolation and characterization of an infectious CHIKV from banked serum specimens of suspected patients from the 2009 epidemic in Thailand. Standard plaque assay was used for CHIKV isolation from the banked serum specimens. Isolated CHIKV was identified base on E1 structural gene sequence. Growth kinetic, infectivity, cell viability and cytokine gene expression throughout CHIKV infection in a permissive cell line, 293T cells, was performed using several approaches, including standard plaque assay, immunofluorescence assay, classical MTT assay, and quantitative real-time PCR. Two tailed Student’s t test was used for evaluation statistically significance between the mean values of the groups. Based on the E1 structural gene sequence and phylogenetic analysis, we identified the virus as the CHIK/SBY8/10 isolate from Indonesia. Assessment of the growth kinetics, cytopathic effects as well as its ability to induce cellular immune responses suggested that the currently isolated CHIK/SBY8/10 virus is relatively more virulent than a known CHIKV vaccine strain, which also induces more dramatic proinflammatory responses.
  • Thumbnail Image
    Item
    Characterization of tick organic anion transporting polypeptides (OATPs) upon bacterial and viral infections
    (Springer Nature, 2018-11-14) Taank, Vikas; Zhou, Wenshuo; Zhuang, Xuran; Anderson, John F.; Pal, Utpal; Sultana, Hameeda; Neelakanta, Girish
    Ixodes scapularis organic anion transporting polypeptides (OATPs) play important roles in tick-rickettsial pathogen interactions. In this report, we characterized the role of these conserved molecules in ticks infected with either Lyme disease agent Borrelia burgdorferi or tick-borne Langat virus (LGTV), a pathogen closely related to tick-borne encephalitis virus (TBEV). Quantitative real-time polymerase chain reaction analysis revealed no significant changes in oatps gene expression upon infection with B. burgdorferi in unfed ticks. Synchronous infection of unfed nymphal ticks with LGTV in vitro revealed no significant changes in oatps gene expression. However, expression of specific oatps was significantly downregulated upon LGTV infection of tick cells in vitro. Treatment of tick cells with OATP inhibitor significantly reduced LGTV loads, kynurenine amino transferase (kat), a gene involved in the production of tryptophan metabolite xanthurenic acid (XA), levels and expression of several oatps in tick cells. Furthermore, bioinformatics characterization of OATPs from some of the medically important vectors including ticks, mosquitoes and lice revealed the presence of several glycosylation, phosphorylation and myristoylation sites. This study provides additional evidence on the role of arthropod OATPs in vector-intracellular pathogen interactions.