Department of Veterinary Medicine Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/1605

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Development of a recombinant Newcastle disease virus-vectored vaccine for infectious bronchitis virus variant strains circulating in Egypt
    (Springer Nature, 2019-02-11) Abozeid, Hassanein H.; Paldurai, Anandan; Varghese, Berin P.; Khattar, Sunil K.; Afifi, Manal A.; Zouelfakkar, Sahar; El-Deeb, Ayman H.; El-Kady, Magdy F.; Samal, Siba K.
    Infectious bronchitis virus (IBV) causes a major disease problem for the poultry industry worldwide. The currently used live-attenuated vaccines have the tendency to mutate and/or recombine with circulating field strains resulting in the emergence of vaccine-derived variant viruses. In order to circumvent these issues, and to develop a vaccine that is more relevant to Egypt and its neighboring countries, a recombinant avirulent Newcastle disease virus (rNDV) strain LaSota was constructed to express the codon-optimized S glycoprotein of the Egyptian IBV variant strain IBV/Ck/EG/CU/4/2014 belonging to GI-23 lineage, that is prevalent in Egypt and in the Middle East. A wild type and two modified versions of the IBV S protein were expressed individually by rNDV. A high level of S protein expression was detected in vitro by Western blot and immunofluorescence analyses. All rNDV-vectored IBV vaccine candidates were genetically stable, slightly attenuated and showed growth patterns comparable to that of parental rLaSota virus. Single-dose vaccination of 1-day-old SPF White Leghorn chicks with the rNDVs expressing IBV S protein provided significant protection against clinical disease after IBV challenge but did not show reduction in tracheal viral shedding. Single-dose vaccination also provided complete protection against virulent NDV challenge. However, prime-boost vaccination using rNDV expressing the wild type IBV S protein provided better protection, after IBV challenge, against clinical signs and significantly reduced tracheal viral shedding. These results indicate that the NDV-vectored IBV vaccines are promising bivalent vaccine candidates to control both infectious bronchitis and Newcastle disease in Egypt.
  • Item
    Sequence analysis of fusion protein gene of Newcastle disease virus isolated from outbreaks in Egypt during 2006
    (2011-05-18) Mohamed, Mahmoud HA; Kumar, Sachin; Paldurai, Anandan; Samal, Siba K
    Background: Newcastle disease virus represents APMV-1 and is the most characterized among all APMV types. The F protein cleavage site sequence is a well-characterized determinant of NDV pathogenicity in chickens. In this study, the sequences of fusion protein (F) gene of three Newcastle disease virus (NDV) strains isolated from outbreak in chickens in the Al-Sharkia province of Egypt in 2006 were determined. Findings: The viral genomic RNAs were extracted from the infective allantoic fluid and F gene is amplified using primer sets designed from the available sequences of NDV strains from GenBank. The pathogenicity of NDV strains was determined by three internationally recognized tests mean death time, intracerebral pathogenicity index, and intravenous pathogenicity index. The phylogenetic analysis showed that the Egypt isolates are closely related with the genotype II of class II NDV strains. Conclusions: The sequences of the F genes of the 2006 Egypt isolates are closely related to that of the 2005 Egypt isolate from the same province suggesting that these strains are probably circulating in the vaccinated bird population in Egypt until development of an outbreak.