Department of Veterinary Medicine

Permanent URI for this communityhttp://hdl.handle.net/1903/2231

Browse

Search Results

Now showing 1 - 10 of 114
  • Item
    ZIKA VIRUS RECRUITS CELLULAR PROTEINS TO SUPPORT ITS REPLICATION
    (2024) Chang, Peixi; Zhang, Yanjin YJ; Veterinary Medical Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Zika virus (ZIKV) is a mosquito-borne pathogen with a massive impact on global public health due to its association with severe neurological complications, including microcephaly in newborns and Guillain-Barré syndrome in adults. The ZIKV epidemic in the Americas in 2015-2016 and its continuing spread in tropical regions have highlighted the urgent need to understand the molecular mechanisms of viral replication to develop effective antiviral strategies. However, many aspects of how ZIKV interacts with host cells remain unclear. This study identifies and characterizes host factors contributing to ZIKV replication. First, karyopherin alpha 6 (KPNA6) contributes to ZIKV replication by interacting with the ZIKV non-structural protein NS2B. Characterization and mutational analyses identified two essential amino acid residues within NS2B that are critical for interacting with KPNA6. The substitution of these two residues of NS2B in an infectious ZIKV cDNA clone resulted in a significant reduction in viral replication, suggesting that the NS2B-KPNA6 interaction plays a vital role in the viral life cycle. Further studies found that KPNA6 contributes to ZIKV RNA synthesis. Mass spectrometry analysis of the KPNA6 interactome showed that KPNA6 interacts with proteins involved in RNA synthesis, suggesting that ZIKV recruits these factors by promoting KPNA6-binding. Second, this study developed an effective method to isolate the ZIKV replication complex, a membranous structure where viral RNA is synthesized. Proteomic analysis of the isolated complex led to identifying numerous host proteins associated with the viral replication machinery. Among these proteins, human replication factor C subunit 2 (RFC2), an accessory factor involved in DNA replication and repair, was discovered to facilitate ZIKV replication, making it a potential target for therapeutic interventions. In conclusion, this study reveals crucial host factors essential for ZIKV infection and replication and provides insights into the ZIKV-cell interactions. These findings offer new possibilities for developing novel antiviral strategies for controlling future viral outbreaks.
  • Thumbnail Image
    Item
    Characterization of the GBF1-Arf1 axis in enterovirus RNA replication
    (2024) Gabaglio Velazquez, Samuel Maria; Belov, George; Veterinary Medical Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The Enterovirus genus includes many known and emerging pathogens, such as poliovirus, enteroviruses A71 and D68, rhinoviruses, and others. Enterovirus infection induces the massive remodeling of intracellular membranes and the development of specialized domains harboring viral replication complexes, called replication organelles. The cellular protein Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 (GBF1) is essential for the replication of enteroviruses, but its molecular role in the replication process is unclear. In uninfected cells, GBF1 activates small GTPases of the Arf family and coordinates multiple steps of membrane metabolism, including the functioning of the cellular secretory pathway. The nonstructural protein 3A of poliovirus and other enteroviruses directly interact with and recruits GBF1 to the replication organelles. Moreover, enterovirus infection induces the massive recruitment of all isoforms of the small cellular Arf GTPases to the replication organelles, but the mechanistic role of these proteins in the replication process is not understood either. Here, we sought to characterize the role of the GBF1-Arf1 axis in enterovirus replication. First, we systematically investigated the conserved elements of GBF1 to understand which determinants are important to support poliovirus replication. We demonstrated that multiple GBF1 mutants inactive in cellular metabolism could still be fully functional in the replication complexes. Our results showed that the Arf-activating property, but not the primary structure of the Sec7 catalytic domain is essential for viral replication. They also suggest a redundant mechanism for recruiting GBF1 to the replication sites. This mechanism depends not only on the direct interaction of the protein with the viral protein 3A but also on elements located in the noncatalytic C-terminal domains of GBF1. Next, we investigated the distribution of viral proteins and Arf1 on the replication organelles and their biochemical environment. Pulse-labeling of viral RNA with 5-ethynyl uridine showed that active RNA replication is associated with Arf1-enriched membranes. We observed that Arf1 forms isolated microdomains in the replication organelles and that viral antigens are localized in both Arf1-depleted and Arf1-enriched microdomains. We investigated the viral protein composition of the Arf1-enriched membranes using peroxidase-based proximity biotinylation. Viral protein biotinylation was detected as early as 3 h.p.i., and the non-cleaved fragments of the viral polyprotein were overrepresented in the Arf1-enriched domains. Furthermore, we show that after 4 h.p.i. viral proteins could be efficiently biotinylated only upon digitonin permeabilization of the replication organelle membranes, while such permeabilization inhibited the Arf1 biotinylation signal at the Golgi in non-infected cells. Together, these data support a model that recruitment of GBF1 to the replication organelles generates foci of activated Arfs on the membranes, which further differentiate into specific microdomains through the recruitment of a specific complex of viral proteins and cellular Arf effectors likely needed to establish the lipid and protein composition required for viral replication.
  • Thumbnail Image
    Item
    HOST-PATHOGEN INTERACTION DURING CRYPTOCOCCUS NEOFORMANS CNS INFECTION
    (2024) Chen, Yanli; Shi, Meiqing MS; Veterinary Medical Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Cryptococcus neoformans (C. neoformans) is an opportunistic fungal pathogen widely distributed in the environment globally. C. neoformans infection initiates from the lung through inhaling the spores. While most healthy individuals can clear the fungus or contain the fungus in the granuloma, immunosuppressed patients and a small group of healthy populations fail in controlling the cryptococcal fungal pulmonary infection. In those cases, C. neoformans transmigrates from the lung to the central nervous system (CNS) and causes fatal meningoencephalitis, which accounts for 112,000 deaths each year worldwide. However, we have a very limited understanding of the transmigration of C. neoformans from the bloodstream to the brain in vivo, and the mechanism involved in the clearance of the organism in the brain remains poorly understood. In this study, we first report a novel approach to quantitatively analyze the interactions between C. neoformans and brain endothelial cells in a mouse model using flow cytometry. Using this system, we show that C. neoformans was internalized by brain endothelial cells in vivo and that mice infected with acapsular or heat-killed C. neoformans yeast cells displayed a lower frequency of brain endothelial cells containing the yeast cell compared to mice infected with wild-type or viable yeast cells, respectively. We further demonstrate that brain endothelial cells were invaded by the serotype A strain (H99 strain) at a higher rate compared to the serotype D strain (52D strain). Moreover, we found that clearance of C. neoformans in the brain correlates with accumulation and pro-inflammatory M1 polarization of Ly6Chi mononuclear phagocytes and that these phagocytes play a critical role in the clearance of C. neoformans in the brain. Notably, the accumulation of Ly6Chi mononuclear phagocytes coincides with enhanced secretions of TNF and IFN-γ in the brain. TNF receptor (TNFR) signaling, but not IFN-γ receptor (IFN-γR) signaling, mediates the recruitment of Ly6Chi mononuclear phagocytes to the brain in a cell-intrinsic manner. By contrast, IFN-γ induces M1 polarization of Ly6Chi mononuclear phagocytes. Disruption of TNFR or IFN-γR signaling enhances cryptococcal growth in the brain. Thus, Ly6Chi mononuclear phagocytes act as effector cells for cryptococcal clearance in the brain, involving TNFR as well as IFN-γR signaling. Collectively, our study established that 1) internalization of C. neoformans by brain endothelial cells occurred in vivo and offered a powerful approach to quantitatively analyze fungal migration into the brain; 2) Ly6Chi mononuclear phagocytes accumulate in the brain during brain infection with C. neoformans and function as effector cells for clearance of C. neoformans in the brain involving TNFR signaling and IFN-γ signaling.
  • Thumbnail Image
    Item
    Biological Significance of selected Ixodes scapularis Transcription Factors regulating Tick Hematophagy and Development
    (2023) Antara, Kazi Rifat; Pal, Utpal Professor; Veterinary Medical Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Lyme disease is one of the most prominent vector-borne diseases, which is transmitted by the Ixodes scapularis tick and related species, and the causative agent is the bacterial pathogen Borrelia burgdorferi. Besides I. scapularis, many other tick species are also prolific vectors of several bacterial, viral, or eukaryotic pathogens affecting humans and animals. I. scapularis possess a large genome of 2.26 Gbp, predominantly featuring repetitive DNA or transposomal elements. Although many orthologous genes are present in other arthropods and blood-borne vectors, the genome also encodes numerous unique tick-specific genes. Despite many advances in Ixodes biology and genomics, the molecular basis of their hematophagy and development remains unknown. During feeding on the host, a major tick organ like the gut undergoes remarkable yet poorly understood episodes of cell division and differentiation, accommodating a huge blood meal that can be up to 100-fold greater than their body weight. The gut, therefore, plays a vital role in blood meal acquisition, digestion, and storage, supporting the long-term survival of ticks during prolonged off-host periods of nutrient deprivation. Understanding the molecular mechanism of gut physiology, including cell division and differentiation, is an essential area of research. As transcription factors are central to the biology and development of metazoan organisms yet remain largely uncharacterized in ticks, the goal of this dissertation is to decipher the biological significance of representative groups of major development-associated transcription factors in I. scapularis that are expressed in the gut, especially during blood meal engorgement process. Among them, two of the highly upregulated transcription factors in the gut were chosen for further characterization. We show that both transcription factors, Immunoglobin-fold transcription factor (SuH) and POU domain transcription factor (Nubbin), play essential roles in tick physiology, as their knockdowns impart phenotypic defects, impacting tick feeding, development and life cycle. The latter part of the dissertation will highlight the molecular mechanism of their functions. A fundamental understanding of the molecular basis of tick biology, hematophagy, and development may contribute to developing novel strategies to curb the spread of tick-infection.
  • Thumbnail Image
    Item
    An FcRn-targeted mucosal vaccine against SARS-CoV-2 infection and transmission
    (Springer Nature, 2023-11-06) Li, Weizhong; Wang, Tao; Rajendrakumar, Arunraj M.; Acharya, Gyanada; Miao, Zizhen; Varghese, Berin P.; Yu, Hailiang; Dhakal, Bibek; LeRoith, Tanya; Karunakaran, Athira; Tuo, Wenbin; Zhu, Xiaoping
    SARS-CoV-2 is primarily transmitted through droplets and airborne aerosols, and in order to prevent infection and reduce viral spread vaccines should elicit protective immunity in the airways. The neonatal Fc receptor (FcRn) transfers IgG across epithelial barriers and can enhance mucosal delivery of antigens. Here we explore FcRn-mediated respiratory delivery of SARS-CoV-2 spike (S). A monomeric IgG Fc was fused to a stabilized spike; the resulting S-Fc bound to S-specific antibodies and FcRn. Intranasal immunization of mice with S-Fc and CpG significantly induced antibody responses compared to the vaccination with S alone or PBS. Furthermore, we intranasally immunized mice or hamsters with S-Fc. A significant reduction of virus replication in nasal turbinate, lung, and brain was observed following nasal challenges with SARS-CoV-2 and its variants. Intranasal immunization also significantly reduced viral airborne transmission in hamsters. Nasal IgA, neutralizing antibodies, lung-resident memory T cells, and bone-marrow S-specific plasma cells mediated protection. Hence, FcRn delivers an S-Fc antigen effectively into the airway and induces protection against SARS-CoV-2 infection and transmission.
  • Thumbnail Image
    Item
    The development of resistance to an inhibitor of a cellular protein reveals a critical interaction between the enterovirus protein 2C and a small GTPase Arf1
    (PLoS, 2023-09-18) Viktorova, Ekaterina G.; Gabaglio, Samuel; Moghimi, Seyedehmahsa; Zimina, Anna; Wynn, Bridge G.; Sztul, Elizabeth; Belov, George A.
    The cellular protein GBF1, an activator of Arf GTPases (ArfGEF: Arf guanine nucleotide exchange factor), is recruited to the replication organelles of enteroviruses through interaction with the viral protein 3A, and its ArfGEF activity is required for viral replication, however how GBF1-dependent Arf activation supports the infection remains enigmatic. Here, we investigated the development of resistance of poliovirus, a prototype enterovirus, to increasing concentrations of brefeldin A (BFA), an inhibitor of GBF1. High level of resistance required a gradual accumulation of multiple mutations in the viral protein 2C. The 2C mutations conferred BFA resistance even in the context of a 3A mutant previously shown to be defective in the recruitment of GBF1 to replication organelles, and in cells depleted of GBF1, suggesting a GBF1-independent replication mechanism. Still, activated Arfs accumulated on the replication organelles of this mutant even in the presence of BFA, its replication was inhibited by a pan-ArfGEF inhibitor LM11, and the BFA-resistant phenotype was compromised in Arf1-knockout cells. Importantly, the mutations strongly increased the interaction of 2C with the activated form of Arf1. Analysis of other enteroviruses revealed a particularly strong interaction of 2C of human rhinovirus 1A with activated Arf1. Accordingly, the replication of this virus was significantly less sensitive to BFA than that of poliovirus. Thus, our data demonstrate that enterovirus 2Cs may behave like Arf1 effector proteins and that GBF1 but not Arf activation can be dispensable for enterovirus replication. These findings have important implications for the development of host-targeted anti-viral therapeutics
  • Thumbnail Image
    Item
    Anaphylatoxin signaling activates macrophages to control intracellular Rickettsia proliferation
    (American Society for Microbiology, 2023-10) Dahmani, Mustapha; Zhu, Jinyi C.; Cook, Jack H.; Riley, Sean P.
    Pathogenic Rickettsia species proliferate within the cytoplasm of permissive host cells in vivo. The cytoplasm of these host cells is adequate to support the complex metabolic and physiological needs for Rickettsia growth. However, a dramatic host/pathogen interplay occurs when Rickettsia encounter innate immune cells, whereby the bacteria can proliferate as normal or the host can restrict bacterial growth. This interplay is most divergent within myeloid host cells, where intra- and extracellular factors can produce either successful Rickettsia parasitism or innate immune control of bacterial proliferation. With the prior knowledge that the mammalian complement system is activated during mammalian infection, we sought to determine if extracellular complement activation and anaphylatoxin signaling can modify the fate of Rickettsia within mononuclear host cells. Results indicate that supplementation of growth media with either C3a or C5a anaphylatoxin peptides is sufficient for many myeloid cells to control the proliferation of multiple different Rickettsia species. Chemical or genetic disruption of anaphylatoxin signaling or anaphylatoxin receptors eliminates complement-induced restriction of bacterial proliferation. Finally, anaphylatoxin signaling modifies macrophage physiology by inducing inflammatory phenotypes that ultimately control the intracellular proliferation of these pathogens.
  • Thumbnail Image
    Item
    Zika Virus Induces Degradation of the Numb Protein Required through Embryonic Neurogenesis
    (MDPI, 2023-05-27) He, Jia; Yang, Liping; Chang, Peixi; Yang, Shixing; Wang, Yu; Lin, Shaoli; Tang, Qiyi; Zhang, Yanjin
    Zika virus (ZIKV) is a mosquito-borne flavivirus and causes an infection associated with congenital Zika syndrome and Guillain–Barre syndrome. The mechanism of ZIKV-mediated neuropathogenesis is not well understood. In this study, we discovered that ZIKV induces degradation of the Numb protein, which plays a crucial role in neurogenesis by allowing asymmetric cell division during embryonic development. Our data show that ZIKV reduced the Numb protein level in a time- and dose-dependent manner. However, ZIKV infection appears to have minimal effect on the Numb transcript. Treatment of ZIKV-infected cells with a proteasome inhibitor restores the Numb protein level, which suggests the involvement of the ubiquitin–proteasome pathway. In addition, ZIKV infection shortens the half-life of the Numb protein. Among the ZIKV proteins, the capsid protein significantly reduces the Numb protein level. Immunoprecipitation of the Numb protein co-precipitates the capsid protein, indicating the interaction between these two proteins. These results provide insights into the ZIKV–cell interaction that might contribute to its impact on neurogenesis.
  • Thumbnail Image
    Item
    Cryptococcal Immune Reconstitution Inflammatory Syndrome: From Clinical Studies to Animal Experiments
    (MDPI, 2022-12-07) Shi, Zoe W.; Chen, Yanli; Ogoke, Krystal M.; Strickland, Ashley B.; Shi, Meiqing
    Cryptococcus neoformans is an encapsulated pathogenic fungus that initially infects the lung but can migrate to the central nervous system (CNS), resulting in meningoencephalitis. The organism causes the CNS infection primarily in immunocompromised individuals including HIV/AIDS patients, but also, rarely, in immunocompetent individuals. In HIV/AIDS patients, limited inflammation in the CNS, due to impaired cellular immunity, cannot efficiently clear a C. neoformans infection. Antiretroviral therapy (ART) can rapidly restore cellular immunity in HIV/AIDS patients. Paradoxically, ART induces an exaggerated inflammatory response, termed immune reconstitution inflammatory syndrome (IRIS), in some HIV/AIDS patients co-infected with C. neoformans. A similar excessive inflammation, referred to as post-infectious inflammatory response syndrome (PIIRS), is also frequently seen in previously healthy individuals suffering from cryptococcal meningoencephalitis. Cryptococcal IRIS and PIIRS are life-threatening complications that kill up to one-third of affected people. In this review, we summarize the inflammatory responses in the CNS during HIV-associated cryptococcal meningoencephalitis. We overview the current understanding of cryptococcal IRIS developed in HIV/AIDS patients and cryptococcal PIIRS occurring in HIV-uninfected individuals. We also describe currently available animal models that closely mimic aspects of cryptococcal IRIS observed in HIV/AIDS patients.
  • Thumbnail Image
    Item
    Alternatively activated lung alveolar and interstitial macrophages promote fungal growth
    (Elsevier, 2023-05-19) Strickland, Ashley B.; Chen, Yanli; Sun, Donglei; Shi, Meiqing
    How lung macrophages, especially interstitial macrophages (IMs), respond to invading pathogens remains elusive. Here, we show that mice exhibited a rapid and substantial expansion of macrophages, especially CX3CR1+ IMs, in the lung following infection with Cryptococcus neoformans, a pathogenic fungus leading to high mortality among patients with HIV/AIDS. The IM expansion correlated with enhanced CSF1 and IL-4 production and was affected by the deficiency of CCR2 or Nr4a1. Both alveolar macrophages (AMs) and IMs were observed to harbor C. neoformans and became alternatively activated following infection, with IMs being more polarized. The absence of AMs by genetically disrupting CSF2 signaling reduced fungal loads in the lung and prolonged the survival of infected mice. Likewise, infected mice depleted of IMs by the CSF1 receptor inhibitor PLX5622 displayed significantly lower pulmonary fungal burdens. Thus, C. neoformans infection induces alternative activation of both AMs and IMs, which facilitates fungal growth in the lung.