Department of Veterinary Medicine Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/1605
Browse
Item A Linear Surface Epitope in a Proline-Rich Region of ORF3 Product of Genotype 1 Hepatitis E Virus(MDPI, 2016-08-18) Yang, Yonglin; Lin, Shaoli; Nan, Yuchen; Ma, Zexu; Yang, Liping; Zhang, YanjinHepatitis E virus (HEV) is one of the viral pathogens causing hepatitis in humans. HEV open reading frame 3 (ORF3) encodes a small multifunctional protein (VP13), which is essential for HEV infection. In this study, a linear epitope was identified in a polyproline (PXXP) motif from VP13 of genotype 1 HEV by using a monoclonal antibody. The epitope was detected in enzyme-linked immunosorbent assay (ELISA), immunoblotting and immunofluorescence assays. Epitope mapping showed that the epitope locates in a proline-rich region containing a PXXP motif in amino acid residues 66-75 of VP13. The epitope was also detected in HEV-infected liver cells and reacted with genotype 1-specific antibodies in an HEV-positive human serum sample. The results demonstrated that the epitope in the PXXP motif of the genotype 1 VP13 is linear and surface-oriented, which should facilitate in-depth studies on the viral protein and HEV biology.Item A proximity biotinylation assay with a host protein bait reveals multiple factors modulating enterovirus replication(PLoS, 2022-10-28) Moghimi, Seyedehmahsa; Viktorova, Ekaterina G.; Gabaglio, Samuel; Zimina, Anna; Budnik, Bogdan; Wynn, Bridge G.; Sztul, Elizabeth; Belov, George A.As ultimate parasites, viruses depend on host factors for every step of their life cycle. On the other hand, cells evolved multiple mechanisms of detecting and interfering with viral replication. Yet, our understanding of the complex ensembles of pro- and anti-viral factors is very limited in virtually every virus-cell system. Here we investigated the proteins recruited to the replication organelles of poliovirus, a representative of the genus Enterovirus of the Picornaviridae family. We took advantage of a strict dependence of enterovirus replication on a host protein GBF1, and established a stable cell line expressing a truncated GBF1 fused to APEX2 peroxidase that effectively supported viral replication upon inhibition of the endogenous GBF1. This construct biotinylated multiple host and viral proteins on the replication organelles. Among the viral proteins, the polyprotein cleavage intermediates were overrepresented, suggesting that the GBF1 environment is linked to viral polyprotein processing. The proteomics characterization of biotinylated host proteins identified multiple proteins previously associated with enterovirus replication, as well as more than 200 new factors recruited to the replication organelles. RNA metabolism proteins, many of which normally localize in the nucleus, constituted the largest group, underscoring the massive release of nuclear factors into the cytoplasm of infected cells and their involvement in viral replication. Functional analysis of several newly identified proteins revealed both pro- and anti-viral factors, including a novel component of infection-induced stress granules. Depletion of these proteins similarly affected the replication of diverse enteroviruses indicating broad conservation of the replication mechanisms. Thus, our data significantly expand the knowledge of the composition of enterovirus replication organelles, provide new insights into viral replication, and offer a novel resource for identifying targets for anti-viral interventions.Item Activation of the RpoN-RpoS regulatory pathway during the enzootic life cycle of Borrelia burgdorferi(Springer Nature, 2012-03-23) Ouyang, Zhiming; Narasimhan, Sukanya; Neelakanta, Girish; Kumar, Manish; Pal, Utpal; Fikrig, Erol; Norgard, Michael VThe maintenance of Borrelia burgdorferi in its complex tick-mammalian enzootic life cycle is dependent on the organism's adaptation to its diverse niches. To this end, the RpoN-RpoS regulatory pathway in B. burgdorferi plays a central role in microbial survival and Lyme disease pathogenesis by up- or down-regulating the expression of a number of virulence-associated outer membrane lipoproteins in response to key environmental stimuli. Whereas a number of studies have reported on the expression of RpoS and its target genes, a more comprehensive understanding of when activation of the RpoN-RpoS pathway occurs, and when induction of the pathway is most relevant to specific stage(s) in the life cycle of B. burgdorferi, has been lacking. Herein, we examined the expression of rpoS and key lipoprotein genes regulated by RpoS, including ospC, ospA, and dbpA, throughout the entire tick-mammal infectious cycle of B. burgdorferi. Our data revealed that transcription of rpoS, ospC, and dbpA is highly induced in nymphal ticks when taking a blood meal. The RpoN-RpoS pathway remains active during the mammalian infection phase, as indicated by the sustained transcription of rpoS and dbpA in B. burgdorferi within mouse tissues following borrelial dissemination. However, dbpA transcription levels in fed larvae and intermolt larvae suggested that an additional layer of control likely is involved in the expression of the dbpBA operon. Our results also provide further evidence for the downregulation of ospA expression during mammalian infection, and the repression of ospC at later phases of mammalian infection by B. burgdorferi. Our study demonstrates that the RpoN-RpoS regulatory pathway is initially activated during the tick transmission of B. burgdorferi to its mammalian host, and is sustained during mammalian infection.Item Advances in Hepatitis E Virus Biology and Pathogenesis(MDPI, 2021-02-09) Lin, Shaoli; Zhang, Yan-JinHepatitis E virus (HEV) is one of the causative agents for liver inflammation across the world. HEV is a positive-sense single-stranded RNA virus. Human HEV strains mainly belong to four major genotypes in the genus Orthohepevirus A, family Hepeviridae. Among the four genotypes, genotype 1 and 2 are obligate human pathogens, and genotype 3 and 4 cause zoonotic infections. HEV infection with genotype 1 and 2 mainly presents as acute and self-limiting hepatitis in young adults. However, HEV infection of pregnant women with genotype 1 strains can be exacerbated to fulminant hepatitis, resulting in a high rate of case fatality. As pregnant women maintain the balance of maternal-fetal tolerance and effective immunity against invading pathogens, HEV infection with genotype 1 might dysregulate the balance and cause the adverse outcome. Furthermore, HEV infection with genotype 3 can be chronic in immunocompromised patients, with rapid progression, which has been a challenge since it was reported years ago. The virus has a complex interaction with the host cells in downregulating antiviral factors and recruiting elements to generate a conducive environment of replication. The virus-cell interactions at an early stage might determine the consequence of the infection. In this review, advances in HEV virology, viral life cycle, viral interference with the immune response, and the pathogenesis in pregnant women are discussed, and perspectives on these aspects are presented.Item Alternatively activated lung alveolar and interstitial macrophages promote fungal growth(Elsevier, 2023-05-19) Strickland, Ashley B.; Chen, Yanli; Sun, Donglei; Shi, MeiqingHow lung macrophages, especially interstitial macrophages (IMs), respond to invading pathogens remains elusive. Here, we show that mice exhibited a rapid and substantial expansion of macrophages, especially CX3CR1+ IMs, in the lung following infection with Cryptococcus neoformans, a pathogenic fungus leading to high mortality among patients with HIV/AIDS. The IM expansion correlated with enhanced CSF1 and IL-4 production and was affected by the deficiency of CCR2 or Nr4a1. Both alveolar macrophages (AMs) and IMs were observed to harbor C. neoformans and became alternatively activated following infection, with IMs being more polarized. The absence of AMs by genetically disrupting CSF2 signaling reduced fungal loads in the lung and prolonged the survival of infected mice. Likewise, infected mice depleted of IMs by the CSF1 receptor inhibitor PLX5622 displayed significantly lower pulmonary fungal burdens. Thus, C. neoformans infection induces alternative activation of both AMs and IMs, which facilitates fungal growth in the lung.Item An FcRn-targeted mucosal vaccine against SARS-CoV-2 infection and transmission(Springer Nature, 2023-11-06) Li, Weizhong; Wang, Tao; Rajendrakumar, Arunraj M.; Acharya, Gyanada; Miao, Zizhen; Varghese, Berin P.; Yu, Hailiang; Dhakal, Bibek; LeRoith, Tanya; Karunakaran, Athira; Tuo, Wenbin; Zhu, XiaopingSARS-CoV-2 is primarily transmitted through droplets and airborne aerosols, and in order to prevent infection and reduce viral spread vaccines should elicit protective immunity in the airways. The neonatal Fc receptor (FcRn) transfers IgG across epithelial barriers and can enhance mucosal delivery of antigens. Here we explore FcRn-mediated respiratory delivery of SARS-CoV-2 spike (S). A monomeric IgG Fc was fused to a stabilized spike; the resulting S-Fc bound to S-specific antibodies and FcRn. Intranasal immunization of mice with S-Fc and CpG significantly induced antibody responses compared to the vaccination with S alone or PBS. Furthermore, we intranasally immunized mice or hamsters with S-Fc. A significant reduction of virus replication in nasal turbinate, lung, and brain was observed following nasal challenges with SARS-CoV-2 and its variants. Intranasal immunization also significantly reduced viral airborne transmission in hamsters. Nasal IgA, neutralizing antibodies, lung-resident memory T cells, and bone-marrow S-specific plasma cells mediated protection. Hence, FcRn delivers an S-Fc antigen effectively into the airway and induces protection against SARS-CoV-2 infection and transmission.Item Anaphylatoxin signaling activates macrophages to control intracellular Rickettsia proliferation(American Society for Microbiology, 2023-10) Dahmani, Mustapha; Zhu, Jinyi C.; Cook, Jack H.; Riley, Sean P.Pathogenic Rickettsia species proliferate within the cytoplasm of permissive host cells in vivo. The cytoplasm of these host cells is adequate to support the complex metabolic and physiological needs for Rickettsia growth. However, a dramatic host/pathogen interplay occurs when Rickettsia encounter innate immune cells, whereby the bacteria can proliferate as normal or the host can restrict bacterial growth. This interplay is most divergent within myeloid host cells, where intra- and extracellular factors can produce either successful Rickettsia parasitism or innate immune control of bacterial proliferation. With the prior knowledge that the mammalian complement system is activated during mammalian infection, we sought to determine if extracellular complement activation and anaphylatoxin signaling can modify the fate of Rickettsia within mononuclear host cells. Results indicate that supplementation of growth media with either C3a or C5a anaphylatoxin peptides is sufficient for many myeloid cells to control the proliferation of multiple different Rickettsia species. Chemical or genetic disruption of anaphylatoxin signaling or anaphylatoxin receptors eliminates complement-induced restriction of bacterial proliferation. Finally, anaphylatoxin signaling modifies macrophage physiology by inducing inflammatory phenotypes that ultimately control the intracellular proliferation of these pathogens.Item A balanced game: chicken macrophage response to ALV-J infection(Springer Nature, 2019-03-06) Feng, Min; Xie, Tingting; Li, Yuanfang; Zhang, Nan; Lu, Qiuyuan; Zhou, Yaohong; Shi, Meiqing; Sun, Jingchen; Zhang, XiquanAvian leukosis virus subgroup J (ALV-J) infection can cause tumors and immunosuppression in infected chickens. Macrophages play a central role in host defense against invading pathogens. In this study, we discovered an interesting phenomenon: ALV-J replication is weakened from 3 hours post-infection (hpi) to 36 hpi, which was verified using Western blotting and RT-PCR. To further investigate the interaction between ALV-J and macrophages, transcriptome analysis was performed to analyze the host genes’ function in chicken primary monocyte-derived macrophages (MDM). Compared to the uninfected control, 624 up-regulated differentially expressed genes (DEG) and 341 down-regulated DEG at 3 hpi, and 174 up-regulated DEG and 87 down-regulated DEG at 36 hpi were identified in chicken MDM, respectively. ALV-J infection induced strong innate immune responses in chicken MDM at 3 hpi, instead of 36 hpi, according to the analysis results of Gene Ontology and KEGG pathway. Importantly, the host factors, such as up-regulated MIP-3α, IL-1β, iNOS, K60, IRG1, CH25H, NFKBIZ, lysozyme and OASL were involved in the host defense response during the course of ALV-J infection. On the contrary, up-regulated EX-FABP, IL4I1, COX-2, NFKBIA, TNFAIP3 and the Jak STAT pathway inhibitors including CISH, SOCS1 and SOCS3 are beneficial to ALV-J survival in chicken macrophages. We speculated that ALV-J tropism for macrophages helps to establish a latent infection in chicken MDM from 6 to 36 hpi. The present study provides a comprehensive view of the interactions between macrophages and ALV-J. It suggests the mechanisms of defense of chicken macrophages against ALV-J invasion and how ALV-J escape the host innate immune responses.Item BB0324 and BB0028 are constituents of the Borrelia burgdorferi β-barrel assembly machine (BAM) complex(Springer Nature, 2012-04-20) Lenhart, Tiffany R; Kenedy, Melisha R; Yang, Xiuli; Pal, Utpal; Akins, Darrin RSimilar to Gram-negative bacteria, the outer membrane (OM) of the pathogenic spirochete, Borrelia burgdorferi, contains integral OM-spanning proteins (OMPs), as well as membrane-anchored lipoproteins. Although the mechanism of OMP biogenesis is still not well-understood, recent studies have indicated that a heterooligomeric OM protein complex, known as BAM (β-barrel assembly machine) is required for proper assembly of OMPs into the bacterial OM. We previously identified and characterized the essential β-barrel OMP component of this complex in B. burgdorferi, which we determined to be a functional BamA ortholog. In the current study, we report on the identification of two additional protein components of the B. burgdorferi BAM complex, which were identified as putative lipoproteins encoded by ORFs BB0324 and BB0028. Biochemical assays with a BamA-depleted B. burgdorferi strain indicate that BB0324 and BB0028 do not readily interact with the BAM complex without the presence of BamA, suggesting that the individual B. burgdorferi BAM components may associate only when forming a functional BAM complex. Cellular localization assays indicate that BB0324 and BB0028 are OM-associated subsurface lipoproteins, and in silico analyses indicate that BB0324 is a putative BamD ortholog. The combined data suggest that the BAM complex of B. burgdorferi contains unique protein constituents which differ from those found in other proteobacterial BAM complexes. The novel findings now allow for the B. burgdorferi BAM complex to be further studied as a model system to better our understanding of spirochetal OM biogenesis in general.Item Challenge for One Health: Co-Circulation of Zoonotic H5N1 and H9N2 Avian Influenza Viruses in Egypt(MDPI, 2018-03-09) Kim, Shin-HeeHighly pathogenic avian influenza (HPAI) H5N1 viruses are currently endemic in poultry in Egypt. Eradication of the viruses has been unsuccessful due to improper application of vaccine-based control strategies among other preventive measures. The viruses have evolved rapidly with increased bird-to-human transmission efficacy, thus affecting both animal and public health. Subsequent spread of potentially zoonotic low pathogenic avian influenza (LPAI) H9N2 in poultry has also hindered efficient control of avian influenza. The H5N1 viruses acquired enhanced bird-to-human transmissibility by (1) altering amino acids in hemagglutinin (HA) that enable binding affinity to human-type receptors, (2) loss of the glycosylation site and 130 loop in the HA protein and (3) mutation of E627K in the PB2 protein to enhance viral replication in mammalian hosts. The receptor binding site of HA of Egyptian H9N2 viruses has been shown to contain the Q234L substitution along with a H191 mutation, which can increase human-like receptor specificity. Therefore, co-circulation of H5N1 and H9N2 viruses in poultry farming and live bird markets has increased the risk of human exposure, resulting in complication of the epidemiological situation and raising a concern for potential emergence of a new influenza A virus pandemic. For efficient control of infection and transmission, the efficacy of vaccine and vaccination needs to be improved with a comprehensive control strategy, including enhanced biosecurity, education, surveillance, rapid diagnosis and culling of infected poultry.Item Characterization of a Chikungunya virus strain isolated from banked patients’ sera(Springer Nature, 2016-09-02) Chalaem, Pattra; Chusri, Sarunyou; Fernandez, Stefan; Chotigeat, Wilaiwan; Anguita, Juan; Pal, Utpal; Promnares, KamoltipChikungunya virus (CHIKV) is a prevalent mosquito-borne pathogen that is emerging in many parts of the globe causing significant human morbidity. Here, we report the isolation and characterization of an infectious CHIKV from banked serum specimens of suspected patients from the 2009 epidemic in Thailand. Standard plaque assay was used for CHIKV isolation from the banked serum specimens. Isolated CHIKV was identified base on E1 structural gene sequence. Growth kinetic, infectivity, cell viability and cytokine gene expression throughout CHIKV infection in a permissive cell line, 293T cells, was performed using several approaches, including standard plaque assay, immunofluorescence assay, classical MTT assay, and quantitative real-time PCR. Two tailed Student’s t test was used for evaluation statistically significance between the mean values of the groups. Based on the E1 structural gene sequence and phylogenetic analysis, we identified the virus as the CHIK/SBY8/10 isolate from Indonesia. Assessment of the growth kinetics, cytopathic effects as well as its ability to induce cellular immune responses suggested that the currently isolated CHIK/SBY8/10 virus is relatively more virulent than a known CHIKV vaccine strain, which also induces more dramatic proinflammatory responses.Item Characterization of influenza virus sialic acid receptors in minor poultry species(2010-12-09) Kimble, Brian; Ramirez Nieto, Gloria; Perez, Daniel RIt is commonly accepted that avian influenza viruses (AIVs) bind to terminal a2,3 sialic acid (SA) residues whereas human influenza viruses bind to a2,6 SA residues. By a series of amino acid changes on the HA surface protein, AIVs can switch receptor specificity and recognize a2,6 SA positive cells, including human respiratory epithelial cells. Animal species, like pigs and Japanese quail, that contain both a2,3 and a2,6 SA become ideal environments for receptor switching. Here, we describe the SA patterns and distributions in 6 common minor domestic poultry species: Peking duck, Toulouse geese, Chinese ring-neck pheasant, white midget turkey, bobwhite quail, and pearl guinea fowl. Lectins specific to a2,3 and a2,6 SA (Maakia amurensis agglutinin and Sambuca nigra agglutinin, respectively) were used to detect SA by an alkaline phosphotase-based method and a fluorescent-based method. Differences in SA moieties and their ability to bind influenza viruses were visualized by fluorescent labeling of 4 different H3N2 influenza viruses known to be specific for one receptor or the other. The geese and ducks showed a2,3 SA throughout the respiratory tract and marginal a2,6 SA only in the colon. The four other avian species showed both a2,3 and a2,6 SA in the respiratory tract and the intestines. Furthermore, the turkey respiratory tract showed a positive correlation between age and a2,6 SA levels. The fact that these birds have both avian and human flu receptors, combined with their common presence in backyard farms and live bird markets worldwide, mark them as potential mixing bowl species and necessitates improved surveillance and additional research about the role of these birds in influenza host switching.Item Characterization of LysBC17, a Lytic Endopeptidase from Bacillus cereus(MDPI, 2019-09-19) Swift, Steven M.; Etobayeva, Irina V.; Reid, Kevin P.; Waters, Jerel J.; Oakley, Brian B.; Donovan, David M.; Nelson, Daniel C.Bacillus cereus, a Gram-positive bacterium, is an agent of food poisoning. B. cereus is closely related to Bacillus anthracis, a deadly pathogen for humans, and Bacillus thuringenesis, an insect pathogen. Due to the growing prevalence of antibiotic resistance in bacteria, alternative antimicrobials are needed. One such alternative is peptidoglycan hydrolase enzymes, which can lyse Gram-positive bacteria when exposed externally. A bioinformatic search for bacteriolytic enzymes led to the discovery of a gene encoding an endolysin-like endopeptidase, LysBC17, which was then cloned from the genome of B. cereus strain Bc17. This gene is also present in the B. cereus ATCC 14579 genome. The gene for LysBC17 encodes a protein of 281 amino acids. Recombinant LysBC17 was expressed and purified from E. coli. Optimal lytic activity against B. cereus occurred between pH 7.0 and 8.0, and in the absence of NaCl. The LysBC17 enzyme had lytic activity against strains of B. cereus, B. anthracis, and other Bacillus species.Item Characterization of tick organic anion transporting polypeptides (OATPs) upon bacterial and viral infections(Springer Nature, 2018-11-14) Taank, Vikas; Zhou, Wenshuo; Zhuang, Xuran; Anderson, John F.; Pal, Utpal; Sultana, Hameeda; Neelakanta, GirishIxodes scapularis organic anion transporting polypeptides (OATPs) play important roles in tick-rickettsial pathogen interactions. In this report, we characterized the role of these conserved molecules in ticks infected with either Lyme disease agent Borrelia burgdorferi or tick-borne Langat virus (LGTV), a pathogen closely related to tick-borne encephalitis virus (TBEV). Quantitative real-time polymerase chain reaction analysis revealed no significant changes in oatps gene expression upon infection with B. burgdorferi in unfed ticks. Synchronous infection of unfed nymphal ticks with LGTV in vitro revealed no significant changes in oatps gene expression. However, expression of specific oatps was significantly downregulated upon LGTV infection of tick cells in vitro. Treatment of tick cells with OATP inhibitor significantly reduced LGTV loads, kynurenine amino transferase (kat), a gene involved in the production of tryptophan metabolite xanthurenic acid (XA), levels and expression of several oatps in tick cells. Furthermore, bioinformatics characterization of OATPs from some of the medically important vectors including ticks, mosquitoes and lice revealed the presence of several glycosylation, phosphorylation and myristoylation sites. This study provides additional evidence on the role of arthropod OATPs in vector-intracellular pathogen interactions.Item Contributions of Net Charge on the PlyC Endolysin CHAP Domain(MDPI, 2019-05-28) Shang, Xiaoran; Nelson, Daniel C.Bacteriophage endolysins, enzymes that degrade the bacterial peptidoglycan (PG), have gained an increasing interest as alternative antimicrobial agents, due to their ability to kill antibiotic resistant pathogens efficiently when applied externally as purified proteins. Typical endolysins derived from bacteriophage that infect Gram-positive hosts consist of an N-terminal enzymatically-active domain (EAD) that cleaves covalent bonds in the PG, and a C-terminal cell-binding domain (CBD) that recognizes specific ligands on the surface of the PG. Although CBDs are usually essential for the EADs to access the PG substrate, some EADs possess activity in the absence of CBDs, and a few even display better activity profiles or an extended host spectrum than the full-length endolysin. A current hypothesis suggests a net positive charge on the EAD enables it to reach the negatively charged bacterial surface via ionic interactions in the absence of a CBD. Here, we used the PlyC CHAP domain as a model EAD to further test the hypothesis. We mutated negatively charged surface amino acids of the CHAP domain that are not involved in structured regions to neutral or positively charged amino acids in order to increase the net charge from -3 to a range from +1 to +7. The seven mutant candidates were successfully expressed and purified as soluble proteins. Contrary to the current hypothesis, none of the mutants were more active than wild-type CHAP. Analysis of electrostatic surface potential implies that the surface charge distribution may affect the activity of a positively charged EAD. Thus, we suggest that while charge should continue to be considered for future engineering efforts, it should not be the sole focus of such engineering efforts.Item Cryptococcal Immune Reconstitution Inflammatory Syndrome: From Clinical Studies to Animal Experiments(MDPI, 2022-12-07) Shi, Zoe W.; Chen, Yanli; Ogoke, Krystal M.; Strickland, Ashley B.; Shi, MeiqingCryptococcus neoformans is an encapsulated pathogenic fungus that initially infects the lung but can migrate to the central nervous system (CNS), resulting in meningoencephalitis. The organism causes the CNS infection primarily in immunocompromised individuals including HIV/AIDS patients, but also, rarely, in immunocompetent individuals. In HIV/AIDS patients, limited inflammation in the CNS, due to impaired cellular immunity, cannot efficiently clear a C. neoformans infection. Antiretroviral therapy (ART) can rapidly restore cellular immunity in HIV/AIDS patients. Paradoxically, ART induces an exaggerated inflammatory response, termed immune reconstitution inflammatory syndrome (IRIS), in some HIV/AIDS patients co-infected with C. neoformans. A similar excessive inflammation, referred to as post-infectious inflammatory response syndrome (PIIRS), is also frequently seen in previously healthy individuals suffering from cryptococcal meningoencephalitis. Cryptococcal IRIS and PIIRS are life-threatening complications that kill up to one-third of affected people. In this review, we summarize the inflammatory responses in the CNS during HIV-associated cryptococcal meningoencephalitis. We overview the current understanding of cryptococcal IRIS developed in HIV/AIDS patients and cryptococcal PIIRS occurring in HIV-uninfected individuals. We also describe currently available animal models that closely mimic aspects of cryptococcal IRIS observed in HIV/AIDS patients.Item CXCR2 is essential for cerebral endothelial activation and leukocyte recruitment during neuroinflammation(Springer Nature, 2015-05-21) Wu, Fengjiao; Zhao, Yawei; Jiao, Tian; Shi, Dongyan; Zhu, Xingxing; Zhang, Mingshun; Shi, Meiqing; Zhou, HongChemokines and chemokine receptors cooperate to promote immune cell recruitment to the central nervous system (CNS). In this study, we investigated the roles of CXCR2 and CXCL1 in leukocyte recruitment to the CNS using a murine model of neuroinflammation. Wild-type (WT), CXCL1−/−, and CXCR2−/− mice each received an intracerebroventricular (i.c.v.) injection of lipopolysaccharide (LPS). Esterase staining and intravital microscopy were performed to examine neutrophil recruitment to the brain. To assess endothelial activation in these mice, the expression of adhesion molecules was measured via quantitative real-time polymerase chain reaction (PCR) and Western blotting. To identify the cellular source of functional CXCR2, chimeric mice were generated by transferring bone marrow cells between the WT and CXCR2−/− mice. Expression levels of the chemokines CXCL1, CXCL2, and CXCL5 were significantly increased in the brain following the i.c.v. injection of LPS. CXCR2 or CXCL1 deficiency blocked neutrophil infiltration and leukocyte recruitment in the cerebral microvessels. In the CXCR2−/− and CXCL1−/− mice, the cerebral endothelial expression of adhesion molecules such as P-selectin and VCAM-1 was dramatically reduced. Furthermore, the bone marrow transfer experiments demonstrated that CXCR2 expression on CNS-residing cells is essential for cerebral endothelial activation and leukocyte recruitment. Compared with microglia, cultured astrocytes secreted a much higher level of CXCL1 in vitro. Astrocyte culture conditioned medium significantly increased the expression of VCAM-1 and ICAM-1 in cerebral endothelial cells in a CXCR2-dependent manner. Additionally, CXCR2 messenger RNA (mRNA) expression in cerebral endothelial cells but not in microglia or astrocytes was increased following tumor necrosis factor-α (TNF-α) stimulation. The intravenous injection of the CXCR2 antagonist SB225002 significantly inhibited endothelial activation and leukocyte recruitment to cerebral microvessels. CXCL1 secreted by astrocytes and endothelial CXCR2 play essential roles in cerebral endothelial activation and subsequent leukocyte recruitment during neuroinflammation.Item CXCR6+CD4+ T cells promote mortality during Trypanosoma brucei infection(PLOS, 2021-10-06) Liu, Gongguan; Abas, Osama; Strickland, Ashley B.; Chen, Yanli; Shi, MeiqingLiver macrophages internalize circulating bloodborne parasites. It remains poorly understood how this process affects the fate of the macrophages and T cell responses in the liver. Here, we report that infection by Trypanosoma brucei induced depletion of macrophages in the liver, leading to the repopulation of CXCL16-secreting intrahepatic macrophages, associated with substantial accumulation of CXCR6+CD4+ T cells in the liver. Interestingly, disruption of CXCR6 signaling did not affect control of the parasitemia, but significantly enhanced the survival of infected mice, associated with reduced inflammation and liver injury. Infected CXCR6 deficient mice displayed a reduced accumulation of CD4+ T cells in the liver; adoptive transfer experiments suggested that the reduction of CD4+ T cells in the liver was attributed to a cell intrinsic property of CXCR6 deficient CD4+ T cells. Importantly, infected CXCR6 deficient mice receiving wild-type CD4+ T cells survived significantly shorter than those receiving CXCR6 deficient CD4+ T cells, demonstrating that CXCR6+CD4+ T cells promote the mortality. We conclude that infection of T. brucei leads to depletion and repopulation of liver macrophages, associated with a substantial influx of CXCR6+CD4+ T cells that mediates mortality.Item Detection of NP, N3 and N7 antibodies to avian influenza virus by indirect ELISA using yeast-expressed antigens(Springer Nature, 2009-10-07) Upadhyay, Chitra; Ammayappan, Arun; Vakharia, Vikram NAvian influenza viruses, belonging to the family Orthomyxoviridae, possess distinct combinations of hemagglutinin (H) and the neuraminidase (N) surface glycoproteins. Typing of both H and N antigens is essential for the epidemiological and surveillance studies. Therefore, it is important to find a rapid, sensitive, and specific method for their assay, and ELISA can be useful for this purpose, by using recombinant proteins. The nucleoprotein (NP) and truncated neuraminidase subtype 3 and 7 of avian influenza virus (AIV) were expressed in Saccharomyces cerevisiae and used to develop an indirect enzyme-linked immunosorbent assay for antibody detection. The developed assays were evaluated with a panel of 64 chicken serum samples. The performance of NP-ELISA was compared with the commercially available ProFlok® AIV ELISA kit. The results showed comparable agreement and sensitivity between the two tests, indicating that NP-ELISA assay can be used for screening the influenza type A antibody in AIV infected birds. The N3 and N7- ELISAs also reacted specifically to their type specific sera and did not exhibit any cross-reaction with heterologous neuraminidase subtype specific sera. The study demonstrates the expression of the NP, N3, and N7 proteins of AIV in yeast (S. cerevisiae) and their application in developing an indirect ELISA for detecting NP, N3 and N7 antibodies from AIV-infected chicken sera. The described indirect ELISAs are rapid, sensitive, specific and can be used as promising tests during serological surveillance.Item Development of a recombinant Newcastle disease virus-vectored vaccine for infectious bronchitis virus variant strains circulating in Egypt(Springer Nature, 2019-02-11) Abozeid, Hassanein H.; Paldurai, Anandan; Varghese, Berin P.; Khattar, Sunil K.; Afifi, Manal A.; Zouelfakkar, Sahar; El-Deeb, Ayman H.; El-Kady, Magdy F.; Samal, Siba K.Infectious bronchitis virus (IBV) causes a major disease problem for the poultry industry worldwide. The currently used live-attenuated vaccines have the tendency to mutate and/or recombine with circulating field strains resulting in the emergence of vaccine-derived variant viruses. In order to circumvent these issues, and to develop a vaccine that is more relevant to Egypt and its neighboring countries, a recombinant avirulent Newcastle disease virus (rNDV) strain LaSota was constructed to express the codon-optimized S glycoprotein of the Egyptian IBV variant strain IBV/Ck/EG/CU/4/2014 belonging to GI-23 lineage, that is prevalent in Egypt and in the Middle East. A wild type and two modified versions of the IBV S protein were expressed individually by rNDV. A high level of S protein expression was detected in vitro by Western blot and immunofluorescence analyses. All rNDV-vectored IBV vaccine candidates were genetically stable, slightly attenuated and showed growth patterns comparable to that of parental rLaSota virus. Single-dose vaccination of 1-day-old SPF White Leghorn chicks with the rNDVs expressing IBV S protein provided significant protection against clinical disease after IBV challenge but did not show reduction in tracheal viral shedding. Single-dose vaccination also provided complete protection against virulent NDV challenge. However, prime-boost vaccination using rNDV expressing the wild type IBV S protein provided better protection, after IBV challenge, against clinical signs and significantly reduced tracheal viral shedding. These results indicate that the NDV-vectored IBV vaccines are promising bivalent vaccine candidates to control both infectious bronchitis and Newcastle disease in Egypt.
- «
- 1 (current)
- 2
- 3
- »