Institute for Systems Research Technical Reports

Permanent URI for this collectionhttp://hdl.handle.net/1903/4376

This archive contains a collection of reports generated by the faculty and students of the Institute for Systems Research (ISR), a permanent, interdisciplinary research unit in the A. James Clark School of Engineering at the University of Maryland. ISR-based projects are conducted through partnerships with industry and government, bringing together faculty and students from multiple academic departments and colleges across the university.

Browse

Search Results

Now showing 1 - 10 of 69
  • Thumbnail Image
    Item
    New Results on Modal Participation Factors: Revealing a Previously Unknown Dichotomy
    (2007) Hashlamoun, Wael A.; Hassouneh, Munther A.; Abed, Eyad H.
    This paper presents a new fundamental approach to modal participation analysis of linear time-invariant systems, leading to new insights and new formulas for modal participation factors. Modal participation factors were introduced over a quarter century ago as a way of measuring the relative participation of modes in states, and of states in modes, for linear time-invariant systems. Participation factors have proved their usefulness in the field of electric power systems and in other applications. However, in the current understanding, it is routinely taken for granted that the measure of participation of modes in states is identical to that for participation of states in modes. Here, a new analysis using averaging over an uncertain set of system initial conditions yields the conclusion that these quantities(participation of modes in states and participation of states in modes) should not be viewed as interchangeable. In fact, it is proposed that a new definition and calculation} replace the existing ones for state in mode participation factors, while the previously existing participation factors definition and formula should be retained but viewed only as mode in state participation factors. Examples are used throughout the paper to illustrate the issues addressed and results obtained.
  • Thumbnail Image
    Item
    Computing Balanced Realizations for Nonlinear Systems
    (2000) Newman, Andrew J.; Krishnaprasad, Perinkulam S.; Krishnaprasad, Perinkulam S.; ISR; CDCSS
    This paper addresses the problem of computability pertaining to the Scherpen(1994) theory and procedure for balancing of nonlinear systems. In contrastto Moore's (1981) balancing method for linear systems, the Scherpen procedurefor nonlinear balancing is not immediately amenable to computationalimplementation. For example, the controllability energy function correspondsto the value function for a nonlinear optimal control problem. Also, theMorse-Palais lemma guarantees the existence of a local coordinatetransformation under which the controllability energy function takes acanonical quadratic form, but provides no constructive procedure for obtainingit. Thus, tools have not yet appeared for computing balanced realizations fornonlinear systems, and the procedure has not yet been applied as a tool formodel reduction.

    First, we consider the problem of computing the controllability energyfunction without numerically solving the family of optimal control problems,or the associated Hamilton-Jacobi-Bellman equation, implied in its definition.Stochastically excited systems play a major role in our methodology. Wepresent a stochastic method for computing an estimate of the controllabilityfunction, and show that in certain situations the method provides an exactsolution. The procedure is tested on applications via Monte-Carlo experiments.

    Then, we address the problem of numerically determining a Morse transformationfor a function with non-degenerate critical point at 0. We develop analgorithm for computing the desired nonlinear transformation and estimatingthe neighborhood on which the transformed controllability function isquadratic.

    In the literature, examples of applied nonlinear balancing have been limited topseudo-balancing of 2-dimensional gradient systems and noting that in the caseof linear systems the energy functions approach reduces to the usual setting ofgramians. We apply our approach to numerically derive, for the first time,balanced representations of nonlinear state-space models. In particular, wepresent applications to a forced damped pendulum system and a forced dampeddouble pendulum system.

    The research and scientific content in this material has been published in theProceedings of the 14th International Symposium on Mathematical Theory of Networks and Systems, Perpignan, France, June 19-23, 2000.
  • Thumbnail Image
    Item
    Experimenting with Hybrid Control
    (2000) Brockett, Roger W.; Hristu, Dimitrios; ISR; CDCSS
    There is a growing realization among educators andemployers that students of automatic control should be encouraged tothink of the subject in broader terms. The systems approach shouldembrace communication requirements, signal processing, data logging,etc. all the way up to and including the level of complexity suggestedby the phrase "enterprise control." Designing a controlexperiment that is illustrative and instructional in this broadersense presents a number of challenges beyond those discussedabove. The systems under consideration must be very flexible. Ofcourse the hardware must continue to be reliable and relatively easyto understand at an intuitive level. They should also reflect thecomplexity of purpose and the possibility of multi-modal operationthat one expects to find in complex systems. With these qualities inmind, we have assembled and extensively exercised an experimentalhybrid control system for use in an instructional/research laboratoryat Harvard. Our goal with this paper is to describe for others thestructure of the system and to present a sample of the experimentsthat were facilitated by it.

    An important feature of the facility we describe is that it uses severaltypes of sensing modalities including position sensing, tactile sensingand more conventional vision sensing. It can interact with objectsof different complexity and is subject to communication constraints arising in a completelynatural and generic way. In constructing it we have used off-the-shelfcomponents wherever possible and made choices with an eye towardflexibility and reliability.

    The research and scientific content in this material has been submitted to the IEEE Control Systems Magazine.
  • Thumbnail Image
    Item
    Generalized Inverses for Finite-Horizon Tracking
    (2000) Hristu, Dimitrios; ISR; CDCSS
    Control and communication issues aretraditionally "decoupled" in discussions of decision and controlproblems, as this simplifies the analysis and generally works well forclassical models. This fundamental assumption deserves re-examinationas control applications spread into new areas where system complexityis significant. Such areas include the coordinated control of aerialvehicles (UAVs), MEMS devices, multi-joint manipulators and othersettings where many systems must share the attention of adecision-maker. We consider a new class ofsampled-data systems (termed "computer-controlled systems") thatoffer the possibility of jointly optimizing between control andcommunication goals. Computer-controlled LTI systems can be viewed aslinear operators between appropriate inner-product spaces. Thegeneralized inverses of these operators are used to solve a class offinite-horizon tracking problems.

    This work was presented at the IEEE Conf. on Decision and Control, Dec. 1999.
  • Thumbnail Image
    Item
    The Dynamics of a Forced Sphere-Plate Mechanical System
    (2000) Hristu, Dimitrios; ISR; CDCSS
    We study the dynamics and explore thecontrollability of a family of sphere-plate mechanical systems. Theseare nonholonomic systems with a five-dimensional configuration spaceand three independent velocities. They consist of a sphere rollingin contact with two horizontal plates. Kinematic models ofsphere-plate systems have played an important role in the controlsystems literature addressing the kinematics of rolling bodies, aswell as in discussions of nonholonomic systems. However, kinematicanalysis falls short of allowing one to understand the dynamicbehavior of such systems. In this work we formulate and study adynamic model for a class of sphere-plate systems in order to answerthe question: "Is it possible to impart a net angular momentum to asphere which rolls without slipping between two plates, given thatthe position of the top plate is subject to exogenousforces?"

    The research and scientific content in this material will appearin IEEE Transactions on Automatic Control.
  • Thumbnail Image
    Item
    Modeling and Simulation of a Tungsten Chemical Vapor Deposition Reactor
    (2000) Chang, Hsiao-Yung; Adomaitis, Raymond A.; ISR
    Chemical vapor deposition (CVD) processes are widely used in semiconductor device fabrication to deposit thin films of electronic materials. Physically based CVD modeling and simulation methods have been adopted for reactor design and process optimization applications to satisfy the increasingly strigent processing requirements.

    In this research, an ULVAC ERA-1000 selective tungsten chemical vapor deposition system located at the University of Maryland was studied where a temperature difference as large as 120 oC between the system wafer temperature reading and the thermocoupled instrumented wafer measurement was found during the manual processing mode.

    The goal of this research was to develop a simplified, but accurate, three-dimensional transport model that is capable of describing the observed reactor behavior.

    A hybrid approach combining experimental and simulation studies was used for model development. Several sets of experiments were conducted to investigate the effects of process parameters on wafer temperature.

    A three-dimensional gas flow and temperature model was developed and used to compute the energy transferred across the gas/wafer interface. System dependent heat transfer parameters were formulated as a nonlinear parameter estimation problem and identified using experimental measurements.

    Good agreement was found between the steady-state wafer temperature predictions and experimental data at various gas compositions, and the wafer temperature dynamics were successfully predicted using a temperature model considering the energy exchanges between the thermocouple, wafer, and showerhead.

  • Thumbnail Image
    Item
    From Detailed Simulation to Model Reduction: Development of Numerical Tools for a Plasma Processing Application
    (2000) Lin, Yi-hung; Adomaitis, Raymond A.; ISR
    Low pressure plasma processing is a key step in manufacturing integrated circuits, used both for etching and for enhancing thin film deposition. The plasma discharge reactor systems are characterized by a large number of adjustable parameters and poorly understood transport and reaction mechanisms. This has motivated the vigorous development of models and full scale simulators in the past decade to study various aspects of plasma processing.

    To increase the utility of existing simulators, model reduction methods must be used to extract the dominant spatial characteristics of the discharge; numerically efficient spectral projection methods are then used to generated the reduced model. These practical needs motivated the development of a set of simulation tools that provide a framework for process simulation, model reduction, and analysis of simulator predictions.

    The goals of this thesis were to build this framework by identifying the computationally common elements of semiconductor device manufacturing process simulation, model reduction, and analysis methods, and to test these tools on the difficult problem of RF plasma simulation. The simulation tools were developed as a library of MATLAB functions; the library and demonstration scripts have been distributed through the MWRtools project website.

  • Thumbnail Image
    Item
    Approximate Matrix Diagonalization for Use in Distributed Control Networks
    (1999) Kantor, George A.; Krishnaprasad, P.S.; ISR; CDCSS
    Distributed control networks are rapidly emerging as aviable and important alternative to centralized control. In a typical distributed control network, a number of spatially distributed nodescomposed of "smart" sensors and actuators are used to take measurements and apply control inputs to some physical plant. The nodes have local processing power and the ability to communicate with the other nodes via a network. The challenge is to compute and implement a feedback law for the resulting MIMO system in a distributed manner on the network.

    Our approach to this problem is based on plant diagonalization.To do this, we search for basis transformations for the vector of outputs coming from the sensors and the vector of inputs applied to the actuators so that, in the new bases, the MIMOsystem becomes a collection of decoupled SISO systems.This formulation provides a number of advantages for the synthesis and implementation of a feedback control law,particularly for systems where the number of inputs and outputs is large.

    Of course, in order for this idea to be feasible,the required basis transformations must have properties which allow them to be implemented on a distributed control network. Namely, they must be computed in a distributed manner which respects the spatial distribution of the data(to reduce communication overhead) and takes advantage of the massive parallel processing capability of the network (to reduce computation time).

    In this thesis, we present some tools which can be used to find suitable transforms which achieve "approximate"plant diagonalization. We begin by showing how to search the large collection of orthogonal transforms which are contained in the wavelet packet to find the one which most nearly, or approximately, diagonalizes a given real valued matrix.Wavelet packet transforms admit a natural distributed implementation,making them suitable for use on a control network.We then introduce a class of linear operators called recursive orthogonal transforms (ROTs) which we have developed specifically for the purpose of signal processing on distributed control networks.

    We show how to use ROTs to approximately diagonalize fixed real and complex matricesas well as transfer function matrices which exhibit a spatial invariance property. Numerical examples of allproposed diagonalization methods are presented and discussed.

  • Thumbnail Image
    Item
    Modeling and Reduction with Applications to Semiconductor Processing
    (1999) Newman, Andrew J.; Krishnaprasad, P.S.; ISR; CDCSS
    This thesis consists of several somewhat distinct but connected parts, withan underlying motivation in problems pertaining to control and optimizationof semiconductor processing. The first part (Chapters 3 and 4) addressesproblems in model reduction for nonlinear state-space control systems. In1993, Scherpen generalized the balanced truncation method to the nonlinearsetting. However, the Scherpen procedure is not easily computable and hasnot yet been applied in practice.

    We offer a method for computing a workingapproximation to the controllability energy function, one of the mainobjects involved in the method. Moreover, we show that for a class ofsecond-order mechanical systems with dissipation, under certain conditionsrelated to the dissipation, an exact formula for the controllabilityfunction can be derived. We then present an algorithm for a numericalimplementation of the Morse-Palais lemma, which produces a local coordinatetransformation under which a real-valued function with a non-degeneratecritical point is quadratic on a neighborhood of the critical point.

    Application of the algorithm to the controllabilty function plays a key rolein computing the balanced representation. We then apply our methods andalgorithms to derive balanced realizations for nonlinear state-space modelsof two example mechanical systems: a simple pendulum and a double pendulum.

    The second part (Chapter 5) deals with modeling of rapid thermal chemicalvapor deposition (RTCVD) for growth of silicon thin films, viafirst-principles and empirical analysis. We develop detailedprocess-equipment models and study the factors that influence depositionuniformity, such as temperature, pressure, and precursor gas flow rates,through analysis of experimental and simulation results. We demonstratethat temperature uniformity does not guarantee deposition thicknessuniformity in a particular commercial RTCVD reactor of interest.

    In thethird part (Chapter 6) we continue the modeling effort, specializing to acontrol system for RTCVD heat transfer. We then develop and apply ad-hocversions of prominent model reduction approaches to derive reduced modelsand perform a comparative study.

  • Thumbnail Image
    Item
    Stabilization of LTI Systems with Communication Constraints
    (1999) Hristu, Dimitrios; ISR; CDCSS
    This work is directed towards exploring interactions ofcommunication and control in systems with communication constraints.Examples of such systems include groups of autonomousvehicles, MEMS arrays and systems whose sensors and actuators aredistributed across a network. We extend some recent results involvingthe stabilization of LTI systems under limited communication andaddress a class of feed-forward control problems for the systems ofinterest.