Electrical & Computer Engineering Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/1658

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Extended Split-Issue: Enabling Flexibility in the Hardware Implementation of NUAL VLIW DSPs
    (2004-06) Iyer, Bharath; Srinivasan, Sadagopan; Jacob, Bruce
    VLIW architecture based DSPs have become widespread due to the combined benefits of simple hardware and compiler-extracted instruction-level parallelism. However, the VLIW instruction set architecture and its hardware implementation are tightly coupled, especially so for Non-Unit Assumed Latency (NUAL) VLIWs. The problem of object code compatibility across processors having different numbers of functional units or hardware latencies has been the Achilles' heel of this otherwise powerful architecture. In this paper, we propose eXtended Split-Issue (XSI), a novel mechanism that breaks the instruction packet syntax of an NUAL VLIW compiler without violating the dataflow dependences. XSI provides a designer the freedom of disassociating the hardware implementation of the NUAL VLIW processor from the instruction set architecture. Further, we investigate fairly radical (in the context of VLIW) changes to the hardware—like removing an adder, adding a multiplier, and incorporating simultaneous multithreading (SMT)—to show that our technique works for a variety of hardware configurations without compromising on performance. The technique can be used in both single-threaded and multi-threaded architectures to achieve a level of flexibility heretofore unavailable in the VLIW arena.
  • Thumbnail Image
    Item
    Cache Design for Embedded Real-Time Systems
    (1999-06-30) Jacob, Bruce
    Caches have long been a mechanism for speeding memory access and are popular in embedded hardware architectures from microcontrollers to core-based ASIC designs. However, caches are considered ill-suited for embedded real-time systems because they provide a probabilistic performance boost— a cache may or may not contain the desired data at any given moment. Analysis that guarantees when an item will or will not be in the cache has proven difficult, so many real-time systems simply disable caching and schedule tasks based on worst-case memory access time. Yet there are several cache organizations that provide the benefit of caching without the real-time drawbacks of hardware-managed caches. These are software-managed caches, and several different examples can be found, from DSP-style on-chip RAM to academic designs. This paper compares the operation and organization of caches as found in general-purpose processors, microcontrollers, and DSPs; it also discusses designs for embedded realtime systems.