Electrical & Computer Engineering Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/1658
Browse
165 results
Search Results
Item Code and Data for "Sparse high-dimensional decomposition of non-primary auditory cortical receptive fields"(2024) Mukherjee, Shoutik; Babadi, Behtash; Shamma, Shihab A.Characterizing neuronal responses to natural stimuli remains a central goal in sensory neuroscience. In auditory cortical neurons, the stimulus selectivity of elicited spiking activity is summarized by a spectrotemporal receptive field (STRF) that relates neuronal responses to the stimulus spectrogram. Though effective in characterizing primary auditory cortical responses, STRFs of non-primary auditory neurons can be quite intricate, reflecting their mixed selectivity. The complexity of non-primary STRFs hence impedes understanding how acoustic stimulus representations are transformed along the auditory pathway. Here, we focus on the relationship between ferret primary auditory cortex (A1) and a secondary region, dorsal posterior ectosylvian gyrus (PEG). We propose estimating receptive fields in PEG with respect to a well-established high-dimensional computational model of primary-cortical stimulus representations. These ``cortical receptive fields'' (CortRF) are estimated greedily to identify the salient primary-cortical features modulating spiking responses and in turn related to corresponding spectrotemporal features. Hence, they provide biologically plausible hierarchical decompositions of STRFs in PEG. Such CortRF analysis was applied to PEG neuronal responses to speech and temporally orthogonal ripple combination (TORC) stimuli and, for comparison, to A1 neuronal responses. CortRFs of PEG neurons captured their selectivity to more complex spectrotemporal features than A1 neurons; moreover, CortRF models were more predictive of PEG (but not A1) responses to speech. Our results thus suggest that secondary-cortical stimulus representations can be computed as sparse combinations of primary-cortical features that facilitate encoding natural stimuli. Thus, by adding the primary-cortical representation, we can account for PEG single-unit responses to natural sounds better than bypassing it and considering as input the auditory spectrogram. These results confirm with explicit details the presumed hierarchical organization of the auditory cortex.Item Miniaturized Capsule System Toward Real-Time Electrochemical Detection of H2S in the Gastrointestinal Tract(Wiley, 2023-11-20) Stine, Justin M.; Ruland, Katie L.; Beardslee, Luke A.; Levy, Joshua A.; Abianeh, Hossein; Botasini, Santiago; Pasricha, Pankaj J.; Ghodssi, RezaHydrogen sulfide (H2S) is a gaseous inflammatory mediator and important signaling molecule for maintaining gastrointestinal (GI) homeostasis. Excess intraluminal H2S in the GI tract has been implicated in inflammatory bowel disease and neurodegenerative disorders; however, the role of H2S in disease pathogenesis and progression is unclear. Herein, an electrochemical gas-sensing ingestible capsule is developed to enable real-time, wireless amperometric measurement of H2S in GI conditions. A gold (Au) three-electrode sensor is modified with a Nafion solid-polymer electrolyte (Nafion-Au) to enhance selectivity toward H2S in humid environments. The Nafion-Au sensor-integrated capsule shows a linear current response in H2S concentration ranging from 0.21 to 4.5 ppm (R2 = 0.954) with a normalized sensitivity of 12.4% ppm−1 when evaluated in a benchtop setting. The sensor proves highly selective toward H2S in the presence of known interferent gases, such as hydrogen (H2), with a selectivity ratio of H2S:H2 = 1340, as well as toward methane (CH4) and carbon dioxide (CO2). The packaged capsule demonstrates reliable wireless communication through abdominal tissue analogues, comparable to GI dielectric properties. Also, an assessment of sensor drift and threshold-based notification is investigated, showing potential for in vivo application. Thus, the developed H2S capsule platform provides an analytical tool to uncover the complex biology-modulating effects of intraluminal H2S.Item Spintronic Quantum Phase Transition in aGraphene/Pb0.24 Sn 0.76 Te Heterostructure with Giant RashbaSpin-Orbit Coupling(Wiley, 2023-12-07) DeMell, Jennifer E.; Naumov, Ivan; Stephen, Gregory M.; Blumenschein, Nicholas A.; Leo Sun, Y.-J.; Fedorko, Adrian; Robinson, Jeremy T.; Campbell, Paul M.; Taylor, Patrick J.; Heiman, Don; Dev, Pratibha; Hanbicki, Aubrey T.; Friedman, Adam L.Mechanical stacking of two dissimilar materials often has surprising consequences for heterostructure behavior. In particular, a 2D electron gas (2DEG) is formed in the heterostructure of the topological crystalline insulator Pb0.24Sn0.76Te and graphene due to contact of a polar with a nonpolar surface and the resulting changes in electronic structure needed to avoid polar catastrophe. The spintronic properties of this heterostructure with non-local spin valve devices are studied. This study observes spin-momentum locking at lower temperatures that transitions to regular spin channel transport only at ≈40 K. Hanle spin precession measurements show a spin relaxation time as high as 2.18 ns. Density functional theory calculations confirm that the spin-momentum locking is due to a giant Rashba effect in the material and that the phase transition is a Lifshitz transition. The theoretically predicted Lifshitz transition is further evident in the phase transition-like behavior in the Landé g-factor and spin relaxation time.Item Changes in Cortical Directional Connectivity during Difficult Listening in Younger and Older Adults(Wiley, 2023-05) Soleimani, Behrad; Dushyanthi Karunathilake, I. M.; Das, Proloy; Kuchinsky, Stephanie E.; Babadi, Behtash; Simon, Jonathan E.One way to investigate the mechanisms that underlie speech comprehension under difficult listening conditions is via cortical connectivity. The innovative Network Localized Granger Causality (NLGC) framework was applied to magnetoencephalography (MEG) data, obtained from older and younger subjects performing a speech listening task in noisy conditions, in delta and theta frequency bands. Directional connectivity between frontal, temporal, and parietal lobes was analyzed. Both aging- and condition-related changes were found, particularly in theta. In younger adults, as background noise increased, there was a transition from predominantly temporal-to-frontal (bottom-up) connections, to predominantly frontal-to-temporal (top-down). In contrast, older adults showed bidirectional information flow between frontal and temporal cortices even for speech in quiet, not changing substantially with increased noise. Additionally, younger listeners did not show changes in the nature of their cortical links for different listening conditions, whereas older listeners exhibited a switch from predominantly facilitative links to predominantly sharpening, when noise increased.Item Metamaterial Model of Tachyonic Dark Energy(MDPI, 2014-02-17) Smolyaninov, Igor I.Dark energy with negative pressure and positive energy density is believed to be responsible for the accelerated expansion of the universe. Quite a few theoretical models of dark energy are based on tachyonic fields interacting with itself and normal (bradyonic) matter. Here, we propose an experimental model of tachyonic dark energy based on hyperbolic metamaterials. Wave equation describing propagation of extraordinary light inside hyperbolic metamaterials exhibits 2 + 1 dimensional Lorentz symmetry. The role of time in the corresponding effective 3D Minkowski spacetime is played by the spatial coordinate aligned with the optical axis of the metamaterial. Nonlinear optical Kerr effect bends this spacetime resulting in effective gravitational force between extraordinary photons. We demonstrate that this model has a self-interacting tachyonic sector having negative effective pressure and positive effective energy density. Moreover, a composite multilayer SiC-Si hyperbolic metamaterial exhibits closely separated tachyonic and bradyonic sectors in the long wavelength infrared range. This system may be used as a laboratory model of inflation and late time acceleration of the universe.Item Fractional Effective Charges and Misner-Wheeler Charge without Charge Effect in Metamaterials(MDPI, 2016-07-08) Smolyaninov, IgorTransformation optics enables engineering of the effective topology and dimensionality of the optical space in metamaterials. Nonlinear optics of such metamaterials may mimic Kaluza-Klein theories having one or more kinds of effective charges. As a result, novel photon blockade devices may be realized. Here we demonstrate that an electromagnetic wormhole may be designed, which connects two points of such an optical space and changes its effective topological connectivity. Electromagnetic field configurations, which exhibit fractional effective charges, appear as a result of such topology change. Moreover, such effects as Misner-Wheeler “charge without charge” may be replicated.Item Thermally Induced Effective Spacetimes in Self-Assembled Hyperbolic Metamaterials(MDPI, 2017-03-08) Smolyaninov, Igor I.Recent developments in gravitation theory indicate that the classic general relativity is an effective macroscopic theory which will be eventually replaced with a more fundamental theory based on thermodynamics of yet unknown microscopic degrees of freedom. Here we consider thermodynamics of an effective spacetime which may be formed under the influence of an external magnetic field in a cobalt ferrofluid. It appears that the extraordinary photons propagating inside the ferrofluid perceive thermal gradients in the ferrofluid as an effective gravitational field, which obeys the Newton law. Moreover, the effective de Sitter spacetime behaviour near the metric signature transition may mimic various cosmological inflation scenarios, which may be visualized directly using an optical microscope. Thus, some features of the hypothetic microscopic theory of gravity are illustrated in the ferrofluid-based analogue models of inflation.Item Extra-Dimensional “Metamaterials”: A Model of Inflation Due to a Metric Signature Transition(MDPI, 2017-09-20) Smolyaninov, Igor I.Lattices of topological defects, such as Abrikosov lattices and domain wall lattices, often arise as metastable ground states in higher-dimensional field theoretical models. We demonstrate that such lattice states may be described as extra-dimensional “metamaterials” via higher-dimensional effective medium theory. A 4 + 1 dimensional extension of Maxwell electrodynamics with a compactified time-like dimension is considered as an example. It is demonstrated that from the point of view of macroscopic electrodynamics an Abrikosov lattice state in such a 4 + 1 dimensional spacetime may be described as a uniaxial hyperbolic medium. Extraordinary photons perceive this medium as a 3 + 1 dimensional Minkowski spacetime in which one of the original spatial dimensions plays the role of a new time-like coordinate. Since the metric signature of this effective spacetime depends on the Abrikosov lattice periodicity, the described model may be useful in studying metric signature transitions.Item Secure Degrees of Freedom in Networks with User Misbehavior(MDPI, 2019-09-26) Banawan, Karim; Ulukus, SennurWe investigate the secure degrees of freedom (s.d.o.f.) of three new channel models: broadcast channel with combating helpers, interference channel with selfish users, and multiple access wiretap channel with deviating users. The goal of introducing these channel models is to investigate various malicious interactions that arise in networks, including active adversaries. That is in contrast with the common assumption in the literature that the users follow a certain protocol altruistically and transmit both message-carrying and cooperative jamming signals in an optimum manner. In the first model, over a classical broadcast channel with confidential messages (BCCM), there are two helpers, each associated with one of the receivers. In the second model, over a classical interference channel with confidential messages (ICCM), there is a helper and users are selfish. By casting each problem as an extensive-form game and applying recursive real interference alignment, we show that, for the first model, the combating intentions of the helpers are neutralized and the full s.d.o.f. is retained; for the second model, selfishness precludes secure communication and no s.d.o.f. is achieved. In the third model, we consider the multiple access wiretap channel (MAC-WTC), where multiple legitimate users wish to have secure communication with a legitimate receiver in the presence of an eavesdropper. We consider the case when a subset of users deviate from the optimum protocol that attains the exact s.d.o.f. of this channel. We consider two kinds of deviation: when some of the users stop transmitting cooperative jamming signals, and when a user starts sending intentional jamming signals. For the first scenario, we investigate possible responses of the remaining users to counteract such deviation. For the second scenario, we use an extensive-form game formulation for the interactions of the deviating and well-behaving users. We prove that a deviating user can drive the s.d.o.f. to zero; however, the remaining users can exploit its intentional jamming signals as cooperative jamming signals against the eavesdropper and achieve an optimum s.d.o.f.Item The Capacity of Private Information Retrieval from Decentralized Uncoded Caching Databases(MDPI, 2019-11-28) Wei, Yi-Peng; Arasli, Batuhan; Banawan, Karim; Ulukus, SennurWe consider the private information retrieval (PIR) problem from decentralized uncoded caching databases. There are two phases in our problem setting, a caching phase, and a retrieval phase. In the caching phase, a data center containing all the K files, where each file is of size L bits, and several databases with storage size constraint 𝜇𝐾𝐿 bits exist in the system. Each database independently chooses 𝜇𝐾𝐿 bits out of the total 𝐾𝐿 bits from the data center to cache through the same probability distribution in a decentralized manner. In the retrieval phase, a user (retriever) accesses N databases in addition to the data center, and wishes to retrieve a desired file privately. We characterize the optimal normalized download cost to be 𝐷∗=∑𝑁+1𝑛=1(𝑁𝑛−1)𝜇𝑛−1(1−𝜇)𝑁+1−𝑛(1+1𝑛+⋯+1𝑛𝐾−1). We show that uniform and random caching scheme which is originally proposed for decentralized coded caching by Maddah-Ali and Niesen, along with Sun and Jafar retrieval scheme which is originally proposed for PIR from replicated databases surprisingly results in the lowest normalized download cost. This is the decentralized counterpart of the recent result of Attia, Kumar, and Tandon for the centralized case. The converse proof contains several ingredients such as interference lower bound, induction lemma, replacing queries and answering string random variables with the content of distributed databases, the nature of decentralized uncoded caching databases, and bit marginalization of joint caching distributions.