Electrical & Computer Engineering Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/1658

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Item
    Using Timeliness in Tracking Infections †
    (MDPI, 2022-05-31) Bastopcu, Melih; Ulukus, Sennur
    We consider real-time timely tracking of infection status (e.g., COVID-19) of individuals in a population. In this work, a health care provider wants to detect both infected people and people who have recovered from the disease as quickly as possible. In order to measure the timeliness of the tracking process, we use the long-term average difference between the actual infection status of the people and their real-time estimate by the health care provider based on the most recent test results. We first find an analytical expression for this average difference for given test rates, infection rates and recovery rates of people. Next, we propose an alternating minimization-based algorithm to find the test rates that minimize the average difference. We observe that if the total test rate is limited, instead of testing all members of the population equally, only a portion of the population may be tested in unequal rates calculated based on their infection and recovery rates. Next, we characterize the average difference when the test measurements are erroneous (i.e., noisy). Further, we consider the case where the infection status of individuals may be dependent, which occurs when an infected person spreads the disease to another person if they are not detected and isolated by the health care provider. In addition, we consider an age of incorrect information-based error metric where the staleness metric increases linearly over time as long as the health care provider does not detect the changes in the infection status of the people. Through extensive numerical results, we observe that increasing the total test rate helps track the infection status better. In addition, an increased population size increases diversity of people with different infection and recovery rates, which may be exploited to spend testing capacity more efficiently, thereby improving the system performance. Depending on the health care provider’s preferences, test rate allocation can be adjusted to detect either the infected people or the recovered people more quickly. In order to combat any errors in the test, it may be more advantageous for the health care provider to not test everyone, and instead, apply additional tests to a selected portion of the population. In the case of people with dependent infection status, as we increase the total test rate, the health care provider detects the infected people more quickly, and thus, the average time that a person stays infected decreases. Finally, the error metric needs to be chosen carefully to meet the priorities of the health care provider, as the error metric used greatly influences who will be tested and at what test rate.
  • Thumbnail Image
    Item
    Adversarial Machine Learning for NextG Covert Communications Using Multiple Antennas
    (MDPI, 2022-07-29) Kim, Brian; Sagduyu, Yalin; Davaslioglu, Kemal; Erpek, Tugba; Ulukus, Sennur
    This paper studies the privacy of wireless communications from an eavesdropper that employs a deep learning (DL) classifier to detect transmissions of interest. There exists one transmitter that transmits to its receiver in the presence of an eavesdropper. In the meantime, a cooperative jammer (CJ) with multiple antennas transmits carefully crafted adversarial perturbations over the air to fool the eavesdropper into classifying the received superposition of signals as noise. While generating the adversarial perturbation at the CJ, multiple antennas are utilized to improve the attack performance in terms of fooling the eavesdropper. Two main points are considered while exploiting the multiple antennas at the adversary, namely the power allocation among antennas and the utilization of channel diversity. To limit the impact on the bit error rate (BER) at the receiver, the CJ puts an upper bound on the strength of the perturbation signal. Performance results show that this adversarial perturbation causes the eavesdropper to misclassify the received signals as noise with a high probability while increasing the BER at the legitimate receiver only slightly. Furthermore, the adversarial perturbation is shown to become more effective when multiple antennas are utilized.
  • Thumbnail Image
    Item
    Dynamic SAFFRON: Disease Control Over Time via Group Testing
    (MDPI, 2022-11-21) Arasli, Batuhan; Ulukus, Sennur
    Group testing is an efficient algorithmic approach to the infection identification problem, based on mixing the test samples and testing the mixed samples instead of individually testing each sample. In this paper, we consider the dynamic infection spread model that is based on the discrete SIR model, which assumes the disease to be spread over time via infected and non-isolated individuals. In our system, the main objective is not to minimize the number of required tests to identify every infection, but instead, to utilize the available, given testing capacity T at each time instance to efficiently control the infection spread. We introduce and study a novel performance metric, which we coin as 𝜖-disease control time. This metric can be used to measure how fast a given algorithm can control the spread of a disease. We characterize the performance of the dynamic individual testing algorithm and introduce a novel dynamic SAFFRON-based group testing algorithm. We present theoretical results and implement the proposed algorithms to compare their performances.
  • Thumbnail Image
    Item
    Personalized Federated Multi-Task Learning over Wireless Fading Channels
    (MDPI, 2022-11-09) Mortaheb, Matin; Vahapoglu, Cemil; Ulukus, Sennur
    Multi-task learning (MTL) is a paradigm to learn multiple tasks simultaneously by utilizing a shared network, in which a distinct header network is further tailored for fine-tuning for each distinct task. Personalized federated learning (PFL) can be achieved through MTL in the context of federated learning (FL) where tasks are distributed across clients, referred to as personalized federated MTL (PF-MTL). Statistical heterogeneity caused by differences in the task complexities across clients and the non-identically independently distributed (non-i.i.d.) characteristics of local datasets degrades the system performance. To overcome this degradation, we propose FedGradNorm, a distributed dynamic weighting algorithm that balances learning speeds across tasks by normalizing the corresponding gradient norms in PF-MTL. We prove an exponential convergence rate for FedGradNorm. Further, we propose HOTA-FedGradNorm by utilizing over-the-air aggregation (OTA) with FedGradNorm in a hierarchical FL (HFL) setting. HOTA-FedGradNorm is designed to have efficient communication between the parameter server (PS) and clients in the power- and bandwidth-limited regime. We conduct experiments with both FedGradNorm and HOTA-FedGradNorm using MT facial landmark (MTFL) and wireless communication system (RadComDynamic) datasets. The results indicate that both frameworks are capable of achieving a faster training performance compared to equal-weighting strategies. In addition, FedGradNorm and HOTA-FedGradNorm compensate for imbalanced datasets across clients and adverse channel effects.
  • Thumbnail Image
    Item
    Group Testing with a Graph Infection Spread Model
    (MDPI, 2023-01-12) Arasli, Batuhan; Ulukus, Sennur
    The group testing idea is an efficient infection identification approach based on pooling the test samples of a group of individuals, which results in identification with less number of tests than individually testing the population. In our work, we propose a novel infection spread model based on a random connection graph which represents connections between n individuals. Infection spreads via connections between individuals, and this results in a probabilistic cluster formation structure as well as non-i.i.d. (correlated) infection statuses for individuals. We propose a class of two-step sampled group testing algorithms where we exploit the known probabilistic infection spread model. We investigate the metrics associated with two-step sampled group testing algorithms. To demonstrate our results, for analytically tractable exponentially split cluster formation trees, we calculate the required number of tests and the expected number of false classifications in terms of the system parameters, and identify the trade-off between them. For such exponentially split cluster formation trees, for zero-error construction, we prove that the required number of tests is 𝑂(log2𝑛) . Thus, for such cluster formation trees, our algorithm outperforms any zero-error non-adaptive group test, binary splitting algorithm, and Hwang’s generalized binary splitting algorithm. Our results imply that, by exploiting probabilistic information on the connections of individuals, group testing can be used to reduce the number of required tests significantly even when the infection rate is high, contrasting the prevalent belief that group testing is useful only when the infection rate is low.
  • Thumbnail Image
    Item
    Dynamic Infection Spread Model Based Group Testing
    (MDPI, 2023-01-02) Arasli, Batuhan; Ulukus, Sennur
    Group testing idea is an efficient approach to detect prevalence of an infection in the test samples taken from a group of individuals. It is based on the idea of pooling the test samples and performing tests to the mixed samples. This approach results in possible reduction in the required number of tests to identify infections. Classical group testing works consider static settings where the infection statuses of the individuals do not change throughout the testing process. In our paper, we study a dynamic infection spread model, inspired by the discrete time SIR model, where infections are spread via non-isolated infected individuals, while infection keeps spreading over time, a limited capacity testing is performed at each time instance as well. In contrast to the classical, static group testing problem, the objective in our setup is not to find the minimum number of required tests to identify the infection status of every individual in the population, but to control the infection spread by detecting and isolating the infections over time by using the given, limited number of tests. In order to analyze the performance of the proposed algorithms, we focus on the average-case analysis of the number of individuals that remain non-infected throughout the process of controlling the infection. We propose two dynamic algorithms that both use given limited number of tests to identify and isolate the infections over time, while the infection spreads, while the first algorithm is a dynamic randomized individual testing algorithm, in the second algorithm we employ the group testing approach similar to the original work of Dorfman. By considering weak versions of our algorithms, we obtain lower bounds for the performance of our algorithms. Finally, we implement our algorithms and run simulations to gather numerical results and compare our algorithms and theoretical approximation results under different sets of system parameters.