Electrical & Computer Engineering Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/1658
Browse
5 results
Search Results
Item Bilaterally Reduced Rolandic Beta Band Activity in Minor Stroke Patients - Dataset(2022) Kulasingham, Joshua; Brodbeck, Christian; Khan, Sheena; Simon, Jonathan; Marsh, ElisabethStroke patients with hemiparesis display decreased beta band (13–25Hz) rolandic activity, correlating to impaired motor function. However, clinically, patients without significant weakness, with small lesions far from sensorimotor cortex, exhibit bilateral decreased motor dexterity and slowed reaction times. We investigate whether these minor stroke patients also display abnormal beta band activity. Magnetoencephalographic (MEG) data were collected from nine minor stroke patients (NIHSS < 4) without significant hemiparesis, at ~1 and ~6 months postinfarct, and eight age-similar controls. Rolandic relative beta power during matching tasks and resting state, and Beta Event Related (De)Synchronization (ERD/ERS) during button press responses were analyzed. Regardless of lesion location, patients had significantly reduced relative beta power and ERS compared to controls. abnormalities persisted over visits, and were present in both ipsi- and contra-lesional hemispheres, consistent with bilateral impairments in motor dexterity and speed. Minor stroke patients without severe weakness display reduced rolandic beta band activity in both hemispheres, which may be linked to bilaterally impaired dexterity and processing speed, implicating global connectivity dysfunction affecting sensorimotor cortex independent of lesion location. Findings not only illustrate global network disruption after minor stroke, but suggest rolandic beta band activity may be a potential biomarker and treatment target, even for minor stroke patients with small lesions far from sensorimotor areas.Item Post-Stroke Acute Dysexecutive Syndrome, a Disorder Resulting from Minor Stroke due to Disruption of Network Dynamics - Dataset(2020) Marsh, Elisabeth B.; Brodbeck, Christian; Llinas, Rafael H.; Mallick, Dania; Kulasingham, Joshua P.; Llinas, Rodolfo R.; Simon, Jonathan Z.Stroke patients with small CNS infarcts often demonstrate an acute dysexecutive syndrome characterized by difficulty with attention, concentration, and processing speed, independent of lesion size or location. We use magnetoencephalography (MEG) to show that disruption of network dynamics may be responsible. Nine patients with recent minor stroke and 8 age-similar controls underwent cognitive screening using the Montreal Cognitive Assessment (MoCA) and MEG to evaluate differences in cerebral activation patterns. During MEG, subjects participated in a visual picture-word matching task. Task complexity was increased as testing progressed. Cluster based permutation tests determined differences in activation patterns within the visual cortex, fusiform gyrus, and lateral temporal lobe. At visit 1, MoCA scores were significantly lower for patients than controls (median (IQR)=26.0 (4) versus 29.5 (3), p=0.005), and patient reaction times were increased. The amplitude of activation was significantly lower after infarct and demonstrated a pattern of temporal dispersion independent of stroke location. Differences were prominent in the fusiform gyrus and lateral temporal lobe. The pattern suggests that distributed network dysfunction may be responsible. Additionally, controls were able to modulate their cerebral activity based on task difficulty. In contrast, stroke patients exhibited the same low-amplitude response to all stimuli. Group differences remained, to a lesser degree, six months later; while MoCA scores and reaction times improved for patients. This study suggests that function is a globally distributed property beyond area-specific functionality, and illustrates the need for longer-term follow-up studies to determine whether abnormal activation patterns ultimately resolve or another mechanism underlies continued recovery.Item Data from: Neural speech restoration at the cocktail party(2020) Brodbeck, Christian; Jiao, Alex; Hong, L Elliot; Simon, Jonathan Z; Simon, Jonathan ZData from the article titled: Neural speech restoration at the cocktail party: Auditory cortex recovers masked speech of both attended and ignored speakers.Item High Frequency Cortical Processing of Continuous Speech in Younger and Older Listeners - Dataset(2019) Kulasingham, Joshua; Brodbeck, Christian; Presacco, Alessandro; Kuchinsky, Stefanie E.; Anderson, Samira; Simon, Jonathan Z.Neural processing along the ascending auditory pathway is often associated with a progressive reduction in characteristic processing rates. For instance, the well-known frequency-following response (FFR) of the auditory midbrain, as measured with electroencephalography (EEG), is dominated by frequencies from ~100 Hz to several hundred Hz, phase-locking to the stimulus waveform at those frequencies. In contrast, cortical responses, whether measured by EEG or magnetoencephalography (MEG), are typically characterized by frequencies of a few Hz to a few tens of Hz, time-locking to acoustic envelope features. In this study we investigated a crossover, cortically generated responses time-locked to continuous speech features at FFR-like rates. Using MEG, we analyzed high-frequency responses (70-300 Hz) to continuous speech using neural source-localized reverse correlation and its corresponding temporal response functions (TRFs). Continuous speech stimuli were presented to 40 subjects (17 younger, 23 older adults) with clinically normal hearing and their MEG responses were analyzed in the 70-300 Hz band. Consistent with the insensitivity of MEG to many subcortical structures, the spatiotemporal profile of these response components indicated a purely cortical origin with ~40 ms peak latency and a right hemisphere bias. TRF analysis was performed using two separate aspects of the speech stimuli: a) the 70-300 Hz band of the speech waveform itself, and b) the 70-300 Hz temporal modulations in the high frequency envelope (300-4000 Hz) of the speech stimulus. The response was dominantly driven by the high frequency envelope, with a much weaker contribution from the waveform (carrier) itself. Age-related differences were also analyzed to investigate a reversal previously seen along the ascending auditory pathway, whereby older listeners show weaker midbrain FFR responses than younger listeners, but, paradoxically, have stronger cortical low frequency responses. In contrast to both these earlier results, this study does not find clear age-related differences in high frequency cortical responses. Finally, these results suggest that EEG high (FFR-like) frequency responses have distinct and separable contributions from both subcortical and cortical sources. Cortical responses at FFR-like frequencies share some properties with midbrain responses at the same frequencies and with cortical responses at much lower frequencies.Item Data from: Rapid Transformation from Auditory to Linguistic Representations of Continuous Speech(2018) Brodbeck, Christian; Hong, L. Elliot; Simon, Jonathan Z.; Hong, L. Elliot; Simon, Jonathan Z.Magnetoencephalography (MEG) data and predictor variables from the article titled: Transformation from auditory to linguistic representations across auditory cortex is rapid and attention dependent for continuous speech