Electrical & Computer Engineering Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/1658

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Dynamic SAFFRON: Disease Control Over Time via Group Testing
    (MDPI, 2022-11-21) Arasli, Batuhan; Ulukus, Sennur
    Group testing is an efficient algorithmic approach to the infection identification problem, based on mixing the test samples and testing the mixed samples instead of individually testing each sample. In this paper, we consider the dynamic infection spread model that is based on the discrete SIR model, which assumes the disease to be spread over time via infected and non-isolated individuals. In our system, the main objective is not to minimize the number of required tests to identify every infection, but instead, to utilize the available, given testing capacity T at each time instance to efficiently control the infection spread. We introduce and study a novel performance metric, which we coin as 𝜖-disease control time. This metric can be used to measure how fast a given algorithm can control the spread of a disease. We characterize the performance of the dynamic individual testing algorithm and introduce a novel dynamic SAFFRON-based group testing algorithm. We present theoretical results and implement the proposed algorithms to compare their performances.
  • Thumbnail Image
    Item
    Dynamic Infection Spread Model Based Group Testing
    (MDPI, 2023-01-02) Arasli, Batuhan; Ulukus, Sennur
    Group testing idea is an efficient approach to detect prevalence of an infection in the test samples taken from a group of individuals. It is based on the idea of pooling the test samples and performing tests to the mixed samples. This approach results in possible reduction in the required number of tests to identify infections. Classical group testing works consider static settings where the infection statuses of the individuals do not change throughout the testing process. In our paper, we study a dynamic infection spread model, inspired by the discrete time SIR model, where infections are spread via non-isolated infected individuals, while infection keeps spreading over time, a limited capacity testing is performed at each time instance as well. In contrast to the classical, static group testing problem, the objective in our setup is not to find the minimum number of required tests to identify the infection status of every individual in the population, but to control the infection spread by detecting and isolating the infections over time by using the given, limited number of tests. In order to analyze the performance of the proposed algorithms, we focus on the average-case analysis of the number of individuals that remain non-infected throughout the process of controlling the infection. We propose two dynamic algorithms that both use given limited number of tests to identify and isolate the infections over time, while the infection spreads, while the first algorithm is a dynamic randomized individual testing algorithm, in the second algorithm we employ the group testing approach similar to the original work of Dorfman. By considering weak versions of our algorithms, we obtain lower bounds for the performance of our algorithms. Finally, we implement our algorithms and run simulations to gather numerical results and compare our algorithms and theoretical approximation results under different sets of system parameters.