Geography Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/1641
Browse
10 results
Search Results
Item A Sample-Based Forest Monitoring Strategy Using Landsat, AVHRR and MODIS Data to Estimate Gross Forest Cover Loss in Malaysia between 1990 and 2005(MDPI, 2013-04-15) Giree, Namita; Stehman, Stephen V.; Potapov, Peter; Hansen, Matthew C.Insular Southeast Asia is a hotspot of humid tropical forest cover loss. A sample-based monitoring approach quantifying forest cover loss from Landsat imagery was implemented to estimate gross forest cover loss for two eras, 1990–2000 and 2000–2005. For each time interval, a probability sample of 18.5 km × 18.5 km blocks was selected, and pairs of Landsat images acquired per sample block were interpreted to quantify forest cover area and gross forest cover loss. Stratified random sampling was implemented for 2000–2005 with MODIS-derived forest cover loss used to define the strata. A probability proportional to x (πpx) design was implemented for 1990–2000 with AVHRR-derived forest cover loss used as the x variable to increase the likelihood of including forest loss area in the sample. The estimated annual gross forest cover loss for Malaysia was 0.43 Mha/yr (SE = 0.04) during 1990–2000 and 0.64 Mha/yr (SE = 0.055) during 2000–2005. Our use of the πpx sampling design represents a first practical trial of this design for sampling satellite imagery. Although the design performed adequately in this study, a thorough comparative investigation of the πpx design relative to other sampling strategies is needed before general design recommendations can be put forth.Item Long-Term Record of Sampled Disturbances in Northern Eurasian Boreal Forest from Pre-2000 Landsat Data(MDPI, 2014-06-27) Chen, Dong; Loboda, Tatiana; Channan, Saurabh; Hoffman-Hall, AmandaStand age distribution is an important descriptor of boreal forest structure, which is directly linked to many ecosystem processes including the carbon cycle, the land–atmosphere interaction and ecosystem services, among others. Almost half of the global boreal biome is located in Russia. The vast extent, remote location, and limited accessibility of Russian boreal forests make remote sensing the only feasible approach to characterize these forests to their full extent. A wide variety of satellite observations are currently available to monitor forest change and infer its structure; however, the period of observations is mostly limited to the 2000s era. Reconstruction of wall-to-wall maps of stand age distribution requires merging longer-term site observations of forest cover change available at the Landsat scale at a subset of locations in Russia with the wall-to-wall coverage available from coarse resolution satellites since 2000. This paper presents a dataset consisting of a suite of multi-year forest disturbance samples and samples of undisturbed forests across Russia derived from Landsat Thematic Mapper and Enhanced Thematic Mapper Plus images from 1985 to 2000. These samples provide crucial information regarding disturbance history in selected regions across the Russian boreal forest and are designed to serve as a training and/or validation dataset for coarse resolution data products. The overall accuracy and Kappa coefficient for the entire sample collection was found to be 83.98% and 0.83%, respectively. It is hoped that the presented dataset will benefit subsequent studies on a variety of aspects of the Russian boreal forest, especially in relation to the carbon budget and climate.Item Assessment of the Suomi NPP VIIRS Land Surface Albedo Data Using Station Measurements and High-Resolution Albedo Maps(MDPI, 2016-02-08) Zhou, Yuan; Wang, Dongdong; Liang, Shunlin; Yu, Yunyue; He, TaoLand surface albedo (LSA), one of the Visible Infrared Imaging Radiometer Suite (VIIRS) environmental data records (EDRs), is a fundamental component for linking the land surface and the climate system by regulating shortwave energy exchange between the land and the atmosphere. Currently, the improved bright pixel sub-algorithm (BPSA) is a unique algorithm employed by VIIRS to routinely generate LSA EDR from VIIRS top-of-atmosphere (TOA) observations. As a product validation procedure, LSA EDR reached validated (V1 stage) maturity in December 2014. This study summarizes recent progress in algorithm refinement, and presents comprehensive validation and evaluation results of VIIRS LSA by using extensive field measurements, Moderate Resolution Imaging Spectroradiometer (MODIS) albedo product, and Landsat-retrieved albedo maps. Results indicate that: (1) by testing the updated desert-specific look-up-table (LUT) that uses a stricter standard to select the training data specific for desert aerosol type in our local environment, it is found that the VIIRS LSA retrieval accuracy is improved over a desert surface and the absolute root mean square error (RMSE) is reduced from 0.036 to 0.023, suggesting the potential of the updated desert LUT to the improve the VIIRS LSA product accuracy; (2) LSA retrieval on snow-covered surfaces is more accurate if the newly developed snow-specific LUT (RMSE = 0.082) replaces the generic LUT (RMSE = 0.093) that is employed in the current operational LSA EDR production; (3) VIIRS LSA is also comparable to high-resolution Landsat albedo retrieval (RMSE < 0.04), although Landsat albedo has a slightly higher accuracy, probably owing to higher spatial resolution with less impacts of mixed pixel; (4) VIIRS LSA retrievals agree well with the MODIS albedo product over various land surface types, with overall RMSE of lower than 0.05 and the overall bias as low as 0.025, demonstrating the comparable data quality between VIIRS and the MODIS LSA product.Item Mapping 2000–2010 Impervious Surface Change in India Using Global Land Survey Landsat Data(MDPI, 2017-04-13) Wang, Panshi; Huang, Chengquan; Brown de Colstoun, Eric C.Understanding and monitoring the environmental impacts of global urbanization requires better urban datasets. Continuous field impervious surface change (ISC) mapping using Landsat data is an effective way to quantify spatiotemporal dynamics of urbanization. It is well acknowledged that Landsat-based estimation of impervious surface is subject to seasonal and phenological variations. The overall goal of this paper is to map 2000–2010 ISC for India using Global Land Survey datasets and training data only available for 2010. To this end, a method was developed that could transfer the regression tree model developed for mapping 2010 impervious surface to 2000 using an iterative training and prediction (ITP) approachAn independent validation dataset was also developed using Google Earth™ imagery. Based on the reference ISC from the validation dataset, the RMSE of predicted ISC was estimated to be 18.4%. At 95% confidence, the total estimated ISC for India between 2000 and 2010 is 2274.62 ± 7.84 km2.Item Automated Quantification of Surface Water Inundation in Wetlands Using Optical Satellite Imagery(MDPI, 2017-08-07) DeVries, Ben; Huang, Chengquan; Lang, Megan W.; Jones, John W.; Huang, Wenli; Creed, Irena F.; Carroll, Mark L.We present a fully automated and scalable algorithm for quantifying surface water inundation in wetlands. Requiring no external training data, our algorithm estimates sub-pixel water fraction (SWF) over large areas and long time periods using Landsat data. We tested our SWF algorithm over three wetland sites across North America, including the Prairie Pothole Region, the Delmarva Peninsula and the Everglades, representing a gradient of inundation and vegetation conditions. We estimated SWF at 30-m resolution with accuracies ranging from a normalized root-mean-square-error of 0.11 to 0.19 when compared with various high-resolution ground and airborne datasets. SWF estimates were more sensitive to subtle inundated features compared to previously published surface water datasets, accurately depicting water bodies, large heterogeneously inundated surfaces, narrow water courses and canopy-covered water features. Despite this enhanced sensitivity, several sources of errors affected SWF estimates, including emergent or floating vegetation and forest canopies, shadows from topographic features, urban structures and unmasked clouds. The automated algorithm described in this article allows for the production of high temporal resolution wetland inundation data products to support a broad range of applications.Item Evaluating Landsat and RapidEye Data for Winter Wheat Mapping and Area Estimation in Punjab, Pakistan(MDPI, 2018-03-21) Khan, Ahmad; Hansen, Matthew C.; Potapov, Peter V.; Adusei, Bernard; Pickens, Amy; Krylov, Alexander; Stehman, Stephen V.While publicly available, cost-free coarse and medium spatial resolution satellite data such as MODIS and Landsat perform well in characterizing industrial cropping systems, commercial high spatial resolution satellite data are often preferred alternative for fine scale land tenure agricultural systems such as found in Pakistan. In this article, we integrated commercial 5 m spatial resolution RapidEye and free 30 m Landsat imagery in characterizing winter wheat in Punjab province, Pakistan. Specifically, we used 5 m spatial resolution RapidEye imagery from peak of the winter wheat growing season to derive training data for the characterization of time-series Landsat data. After co-registration, each RapidEye image was classified into wheat/no wheat labels at the 5 m resolution and then aggregated as percent cover to 30 m Landsat grid cells. We produced four maps, two using RapidEye derived continuous training data (of percent wheat cover) as input to a regression tree model, and two using RapidEye derived categorical training data as input to a classification tree model. From the RapidEye-derived 30 m continuous training data, we derived Map 1 as percent wheat per pixel, and Map 2 as binary wheat/no wheat classification derived using a 50% threshold applied to Map 1. To create the categorical wheat/no wheat training data, we first converted the continuous training data to a wheat/no wheat classification, and then used these categorical RapidEye training data to produce a categorical wheat map from the Landsat data. Two methods for categorizing the training data were used. The first method used a 50% wheat/no wheat threshold to produce Map 3, and the second method used only pure wheat (≥75% cover) and no wheat (≤25% cover) training pixels to produce Map 4. The approach of Map 4 is analogous to a standard method in which whole, pure, high-confidence training pixels are delineated. We validated the wheat maps with field data collected using a stratified, two-stage cluster design. Accuracy of the maps produced from the percent cover training data (Map 1 and Map 2) was not substantially better than the accuracy of the maps produced from the categorical training data as all methods yielded similar overall accuracies (±standard error): 88% (±4%) for Map 1, 90% (±4%) for Map 2, 90% (±4%) for Map 3, and 87% (±4%) for Map 4. Because the percent cover training data did not produce significantly higher accuracies, sub-pixel training data are not required for winter wheat mapping in Punjab. Given sufficient expertise in supervised classification model calibration, freely available Landsat data are sufficient for crop mapping in the fine-scale land tenure system of Punjab. For winter wheat mapping in Punjab and other like landscapes, training data for supervised classification may be collected directly from Landsat images without the need for high resolution reference imagery.Item A Method for Landsat and Sentinel 2 (HLS) BRDF Normalization(MDPI, 2019-03-15) Franch, Belen; Vermote, Eric; Skakun, Sergii; Roger, Jean-Claude; Masek, Jeffrey; Ju, Junchang; Villaescusa-Nadal, Jose Luis; Santamaria-Artigas, AndresThe Harmonized Landsat/Sentinel-2 (HLS) project aims to generate a seamless surface reflectance product by combining observations from USGS/NASA Landsat-8 and ESA Sentinel-2 remote sensing satellites. These satellites’ sampling characteristics provide nearly constant observation geometry and low illumination variation through the scene. However, the illumination variation throughout the year impacts the surface reflectance by producing higher values for low solar zenith angles and lower reflectance for large zenith angles. In this work, we present a model to derive the bidirectional reflectance distribution function (BRDF) normalization and apply it to the HLS product at 30 m spatial resolution. It is based on the BRDF parameters estimated from the MODerate Resolution Imaging Spectroradiometer (MODIS) surface reflectance product (M{O,Y}D09) at 1 km spatial resolution using the VJB method (Vermote et al., 2009). Unsupervised classification (segmentation) of HLS images is used to disaggregate the BRDF parameters to the HLS spatial resolution and to build a BRDF parameters database at HLS scale. We first test the proposed BRDF normalization for different solar zenith angles over two homogeneous sites, in particular one desert and one Peruvian Amazon forest. The proposed method reduces both the correlation with the solar zenith angle and the coefficient of variation (CV) of the reflectance time series in the red and near infrared bands to 4% in forest and keeps a low CV of 3% to 4% for the deserts. Additionally, we assess the impact of the view zenith angle (VZA) in an area of the Brazilian Amazon forest close to the equator, where impact of the angular variation is stronger because it occurs in the principal plane. The directional reflectance shows a strong dependency with the VZA. The current HLS BRDF correction reduces this dependency but still shows an under-correction, especially in the near infrared, while the proposed method shows no dependency with the view angles. We also evaluate the BRDF parameters using field surface albedo measurements as a reference over seven different sites of the US surface radiation budget observing network (SURFRAD) and five sites of the Australian OzFlux network.Item A Mapping Framework to Characterize Land Use in the Sudan-Sahel Region from Dense Stacks of Landsat Data(MDPI, 2019-03-16) Sedano, Fernando; Molini, Vasco; Azad, M. Abdul KalamWe developed a land cover and land use mapping framework specifically designed for agricultural systems of the Sudan-Sahel region. The mapping approach extracts information from inter- and intra-annual vegetation dynamics from dense stacks of Landsat 8 images. We applied this framework to create a 30 m spatial resolution land use map with a focus on agricultural landscapes of northern Nigeria for 2015. This map provides up-to-date information with a higher level of spatial and thematic detail resulting in a more precise characterization of agriculture in the region. The map reveals that agriculture is the main land use in the region. Arable land represents on average 52.5% of the area, higher than the reported national average for Nigeria (38.4%). Irrigated agriculture covers nearly 2.2% of the total area, reaching nearly 20% of the cultivated land when traditional floodplain agriculture systems are included, above the reported national average (0.63%). There is significant variability in land use within the region. Cultivated land in the northern section can reach values higher than 75%, most land suitable for agriculture is already under cultivation and there is limited land for future agricultural expansion. Marginal lands, not suitable for permanent agriculture, can reach 30% of the land at lower altitudes in the northeast and northwest. In contrast, the southern section presents lower land use intensity that results in a complex landscape that intertwines areas farms and larger patches of natural vegetation. This map improves the spatial detail of existing sources of LCLU information for the region and provides updated information of the current status of its agricultural landscapes. This study demonstrates the feasibility of multi temporal medium resolution remote sensing data to provide detailed and up-to-date information about agricultural systems in arid and sub arid landscapes of the Sahel region.Item Landsat Analysis Ready Data for Global Land Cover and Land Cover Change Mapping(MDPI, 2020-01-29) Potapov, Peter; Hansen, Matthew C.; Kommareddy, Indrani; Kommareddy, Anil; Turubanova, Svetlana; Pickens, Amy; Adusei, Bernard; Tyukavina, Alexandra; Ying, QingThe multi-decadal Landsat data record is a unique tool for global land cover and land use change analysis. However, the large volume of the Landsat image archive and inconsistent coverage of clear-sky observations hamper land cover monitoring at large geographic extent. Here, we present a consistently processed and temporally aggregated Landsat Analysis Ready Data produced by the Global Land Analysis and Discovery team at the University of Maryland (GLAD ARD) suitable for national to global empirical land cover mapping and change detection. The GLAD ARD represent a 16-day time-series of tiled Landsat normalized surface reflectance from 1997 to present, updated annually, and designed for land cover monitoring at global to local scales. A set of tools for multi-temporal data processing and characterization using machine learning provided with GLAD ARD serves as an end-to-end solution for Landsat-based natural resource assessment and monitoring. The GLAD ARD data and tools have been implemented at the national, regional, and global extent for water, forest, and crop mapping. The GLAD ARD data and tools are available at the GLAD website for free access.Item Mapping 2000–2010 Impervious Surface Change in India Using Global Land Survey Landsat Data(MDPI, 2017-04-13) Wang, Panshi; Huang, Chengquan; Brown de Colstoun, Eric C.Understanding and monitoring the environmental impacts of global urbanization requires better urban datasets. Continuous field impervious surface change (ISC) mapping using Landsat data is an effective way to quantify spatiotemporal dynamics of urbanization. It is well acknowledged that Landsat-based estimation of impervious surface is subject to seasonal and phenological variations. The overall goal of this paper is to map 2000–2010 ISC for India using Global Land Survey datasets and training data only available for 2010. To this end, a method was developed that could transfer the regression tree model developed for mapping 2010 impervious surface to 2000 using an iterative training and prediction (ITP) approachAn independent validation dataset was also developed using Google Earth™ imagery. Based on the reference ISC from the validation dataset, the RMSE of predicted ISC was estimated to be 18.4%. At 95% confidence, the total estimated ISC for India between 2000 and 2010 is 2274.62 +/- 7.84 km2.