Categorification of the Leray spectral sequence

dc.contributor.advisorRamachandran, Niranjanen_US
dc.contributor.authorShanbhag, Arpithen_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2025-09-15T05:43:38Z
dc.date.issued2025en_US
dc.description.abstractThe first part of this thesis concerns the categorification of differentials in the Leray spectral sequence. Given a continuous map of topological spaces \( f \colon X \rightarrow Y \) and a sheaf of abelian groups \( G \), the Leray spectral sequence takes the form\[ E_2^{p,q} := H^p(Y, R^q f_* G) \Rightarrow H^{p+q}(X, G). \] We provide a categorification of certain differentials in this spectral sequence, specifically those of the form \[ d_2 \colon H^0(Y, R^q f_* G) \rightarrow H^2(Y, R^{q-1} f_* G), \] by constructing a gerbe that encodes the first obstruction to a lifting problem. The differential \( d_2 \) is first described at the level of Čech cocycles. Then, for a class \( \alpha \in H^0(Y, R^q f_* G) \), we construct the sheaf of local lifts, which takes values in \( q \)-groupoids. Taking the 1-truncation of this object yields an \( R^{q-1} f_* G \)-banded gerbe whose cohomology class represents the image of \( \alpha \) under \( d_2 \). Finally, we show that this construction is compatible with the additive structure on cohomology. Second part concerns it with the existence of non-cellular objects in the motivic stable homotopy category $\mathcal{SH}(k)$.en_US
dc.identifierhttps://doi.org/10.13016/8xku-awha
dc.identifier.urihttp://hdl.handle.net/1903/34689
dc.language.isoenen_US
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pqcontrolledTheoretical mathematicsen_US
dc.subject.pquncontrolledAlgebraic Geometryen_US
dc.subject.pquncontrolledHomotopy theoryen_US
dc.subject.pquncontrolledTopologyen_US
dc.titleCategorification of the Leray spectral sequenceen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Shanbhag_umd_0117E_25524.pdf
Size:
423.4 KB
Format:
Adobe Portable Document Format