Unsupervised discovery of solid-state lithium ion conductors

dc.contributor.authorZhang, Ying
dc.contributor.authorHe, Xingfeng
dc.contributor.authorChen, Zhiqian
dc.contributor.authorBai, Qiang
dc.contributor.authorNolan, Adelaide M.
dc.contributor.authorRoberts, Charles A.
dc.contributor.authorBanerjee, Debasish
dc.contributor.authorMatsunaga, Tomoya
dc.contributor.authorMo, Yifei
dc.contributor.authorLing, Chen
dc.date.accessioned2020-07-08T17:28:04Z
dc.date.available2020-07-08T17:28:04Z
dc.date.issued2019-11-20
dc.descriptionPartial funding for Open Access provided by the UMD Libraries' Open Access Publishing Fund.en_US
dc.description.abstractAlthough machine learning has gained great interest in the discovery of functional materials, the advancement of reliable models is impeded by the scarcity of available materials property data. Here we propose and demonstrate a distinctive approach for materials discovery using unsupervised learning, which does not require labeled data and thus alleviates the data scarcity challenge. Using solid-state Li-ion conductors as a model problem, unsupervised materials discovery utilizes a limited quantity of conductivity data to prioritize a candidate list from a wide range of Li-containing materials for further accurate screening. Our unsupervised learning scheme discovers 16 new fast Li-conductors with conductivities of 10−4–10−1 S cm−1 predicted in ab initio molecular dynamics simulations. These compounds have structures and chemistries distinct to known systems, demonstrating the capability of unsupervised learning for discovering materials over a wide materials space with limited property data.en_US
dc.identifierhttps://doi.org/10.13016/nor4-g0wp
dc.identifier.citationZhang, Y., He, X., Chen, Z. et al. Unsupervised discovery of solid-state lithium ion conductors. Nat Commun 10, 5260 (2019). https://doi.org/10.1038/s41467-019-13214-1en_US
dc.identifier.urihttp://hdl.handle.net/1903/26121
dc.language.isoen_USen_US
dc.publisherSpringer Natureen_US
dc.relation.isAvailableAtA. James Clark School of Engineeringen_us
dc.relation.isAvailableAtMaterials Science & Engineeringen_us
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_us
dc.relation.isAvailableAtUniversity of Maryland (College Park, MD)en_us
dc.titleUnsupervised discovery of solid-state lithium ion conductorsen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Unsupervised discovery of solid-state lithium.pdf
Size:
1.48 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.57 KB
Format:
Item-specific license agreed upon to submission
Description: