Materials Science & Engineering Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/1660
Browse
43 results
Search Results
Item Dataset for "Resistance of Boron Nitride Nanotubes to Radiation-Induced Oxidation" as published in The Journal of Physical Chemistry C(2024) Chao, Hsin-Yun (Joy); Nolan, Adelaide M.; Hall, Alex T.; Golberg, Dmitri; Park, Cheol; Yang, Wei-Chang David; Mo, Yifei; Sharma, Renu; Cumings, JohnItem Interface Diagnostics Platform for Thin-Film Solid-State Batteries(2024-08-28) Ferrari, Victoria Castagna; Stewart, David Murdock; Rubloff, GaryThis dataset comprises electorchemical impedance spectroscopy measurements from thin film batteries comprised of LiV2O5, LiPON, and Si. The data is associated with a manuscript that describes the methodology and analysis of the data and conclusions we draw from it in complete detail. (At the time of submission, the manuscript was set to be submitted to a peer reviewed journal.) The data herein is intended to be used to model equivalent circuits for each material and the charge transfer interfaces throughout the device in order to construct the model of the full battery. The demonstrated methods to build from simple materials to a complex device are novel in the field and we hope this data and process will be used by other researchers to develop more robust analysis of batteries across academic labs and industry.Item Flame retardant biogenic building insulation materials from hemp fiber(Wiley, 2023-12-27) Jadhav, Porus Sunil; Sarkar, Arpita; Zhu, Long; Ren, ShenqiangBiogenic thermal insulation materials are in high demand because of its carbon-sequestration nature. However, high flammability, moisture condensation, and relatively high thermal conductivity of biogenic material are major concerns for sustainable building applications. In this study, we report the fire-retardant cellulose xerogel insulation nanocomposites derived from hemp fiber recycling and silica xerogel, in which the boric acid treatment improves its fire retardancy. The as-prepared materials show a low thermal conductivity of 31.3 mW/m K, high flexural modulus of 665 MPa, hydrophobicity with the water contact angle of 115°, and fire retardancy with 30% weight loss over a period of burning time 10 min. Overall, this work provides an effective method for the synthesis of fire-retardant biogenic thermal insulation materials and shows a promising way for next-generation bio-based insulation materials.Item Mitigating Electronic Conduction in Ceria-Based Electrolytes via External Structure Design(Wiley, 2023-12-22) Robinson, Ian A.; Huang, Yi-Lin; Horlick, Samuel A.; Obenland, Jonathan; Robinson, Nicholas; Gritton, J. Evans; Hussain, A. Mohammed; Wachsman, Eric D.Doped ceria electrolytes are the state of the art low-temperature solid oxide electrolytes because of their high ionic conductivity and good material compatibility. However, cerium tends to reduce once exposed to reducing environments, leading to an increase in electronic conduction and a decrease in efficiency. Here, the leakage current is mitigated in ceria-based electrolytes by controlling the defect chemistry through an engineered cathode side microstructure. This functional layer effectively addresses the problematic electronic conduction issue in ceria-based electrolytes without adding significant ohmic resistance and increases the ionic transference to2- number to over 0.93 in a thin 20 µm ceria-based electrolyte at 500 °C, compared to a of to2- 0.8 for an unmodified one. Based on this design, solid oxide fuel cells (SOFCs) are further demonstrated with the remarkable peak power density of 550 mW at 500 °C and excellent stability for over 2000 h. This approach enables a potential breakthrough in the development of ceria-based low-temperature solid oxide electrolytes.Item Spatial and temporal control of glassy-crystalline domains in optical phase change materials(Wiley, 2023-11-07) Lee, Chih-Yu; Lian, Chuanyu; Sun, Hongyi; Huang, Yi-Siou; Acharjee, Niloy; Takeuchi, Ichiro; Rios Ocampo, Carlos A.Chalcogenide phase change materials (PCMs) have become one of the most promising material platforms for the Optics and Photonics community. The unparalleled combination of nonvolatility and large optical property modulation promises devices with low-energy consumption and ultra-compact form factors. At the core of all these applications lies the difficult task of precisely controlling the glassy amorphous and crystalline domains that compose the PCM microstructure and dictate the optical response. A spatially controllable glassy-crystalline domain distribution is desired for intermediate optical response (vs. binary response between fully amorphous and crystalline states), and temporally resolved domains are sought after for repeatable reconfiguration. In this perspective, we briefly review the fundamentals of PCM phase transition in various reconfiguring approaches for optical devices. We discuss each method's underpinning mechanisms, design, advantages, and downsides. Finally, we lay out current challenges and future directions in this field.Item Additive Manufacturing of High-Temperature Hybrid Electronics via Molecular-Decomposed Metals(Wiley, 2023-10-20) Khuje, Saurabh; Alshatnawi, Firas; Smilgies, Detlef; Alhendi, Mohammed; Islam, Abdullah; Armstrong, Jason; Yu, Jian; Poliks, Mark; Ren, ShenqiangAs the modern electronic technology extends into operating in harsh working conditions, it calls for a system that is capable of uncompromising performance in extreme environments, thus providing a strong motivation to look for advanced materials and electronics with the capability of high-throughput and rapid prototyping. Coupled with additive manufacturing, molecular decomposition metals bypass the challenging oddities of traditional material-limited and thermally initiated metalworking, enabling high throughput and rapid prototyping of stoichiometry and composition-controlled metals. Here, a new paradigm for the design and additive manufacturing of copper metallic alloy materials onto ceramics is described by printing molecular decomposable metal materials, capable of withstanding thermo-mechanical loading, operating in extreme environments in static and dynamic conditions. The resulting printed hybrid electronics are electrically stable for 25 h of aging at 1000 °C. This curious fact paves a way for printed antenna and sensor electronics that reliably operate up to 1000 °C. These results can be further extended to establish other printable molecular decomposable materials as a platform for rapid prototyping of high temperature electronics that are suitable for harsh environments.Item High-Throughput Evaluation of Hardening Coefficients of Eight Alloying Elements in Magnesium(Wiley, 2023-08-24) Wang, Chuangye; Zhong, Wei; Garnett, Jess; Zhao, Ji-ChengLiquid–solid diffusion couples (LSDCs) are employed to generate a composition gradient in the single-phase hexagonal closed-packed (hcp) solid solution with compositions up to the solubility limit of various solutes in Mg. Nanoindentation scanning across the composition gradient in LSDCs allows effective evaluation of composition-dependent hardness of eight alloying elements (Al, Ca, Ce, Gd, Li, Sn, Y, and Zn) in the hcp Mg phase. The hardening coefficients, an indicator of the potency of solid-solution hardening, are evaluated from the measured composition-hardness data and correlated with various materials properties such as atomic radius, shear modulus, and elastic modulus of the solutes. The rank of hardening potency of Al, Gd, Sn, Y, and Zn measured by nanoindentation is in good agreement with that measured by microindentation reported in the literature. The hardening coefficient (potency) from the strongest to the weakest is Ce > Ca > Y ≈ Gd > Zn > Al ≈ Sn > Li in Mg-based hcp binary solid solutions. The hardening coefficient is found to be closely correlated with the strengthening potency.Item Additive Manufacturing of High-Temperature Preceramic-Derived SiOC Hybrid Functional Ceramics(Wiley, 2023-09-22) Li, Zheng; Khuje, Saurabh; Islam, Abdullah; Ren, ShenqiangHigh-temperature capable materials, metals, and ceramics are attracting significant interest for applications in extreme environmental conditions. Herein, a hybrid metal-reinforced ceramic matrix material consisting of preceramic-derived high-temperature SiOC and copper nanoplates is reported, enabling the manufacturing of high-temperature sensing electronics. The preceramic polymer precursors including polydimethylsiloxane and polydimethylsilane, together with copper nanoplates, are thermally converted into durable copper-reinforced SiOC ceramics. The presence of copper in SiOC ceramics enhances its electrical conductivity, while SiOC suppresses oxygen uptake and acts as a shield for oxidation to achieve high-temperature thermal resistance and negative temperature coefficient at high temperatures. A comprehensive electric and sensing performance, combined with cost-effectiveness and scalability, can facilitate the utilization of hybrid Cu and SiOC composites in high-temperature electronics.Item High Sulfur Loading and Capacity Retention in Bilayer Garnet Sulfurized-Polyacrylonitrile/Lithium-Metal Batteries with Gel Polymer Electrolytes(Wiley, 2023-09-24) Shi, Changmin; Takeuchi, Saya; Alexander, George V.; Hamann, Tanner; O'Neill, Jonathan; Dura, Joseph A.; Wachsman, Eric D.The cubic-garnet (Li7La3Zr2O12, LLZO) lithium–sulfur battery shows great promise in the pursuit of achieving high energy densities. The sulfur used in the cathodes is abundant, inexpensive, and possesses high specific capacity. In addition, LLZO displays excellent chemical stability with Li metal; however, the instabilities in the sulfur cathode/LLZO interface can lead to performance degradation that limits the development of these batteries. Therefore, it is critical to resolve these interfacial challenges to achieve stable cycling. Here, an innovative gel polymer buffer layer to stabilize the sulfur cathode/LLZO interface is created. Employing a thin bilayer LLZO (dense/porous) architecture as a solid electrolyte and significantly high sulfur loading of 5.2 mg cm−2, stable cycling is achieved with a high initial discharge capacity of 1542 mAh g−1 (discharge current density of 0.87 mA cm−2) and an average discharge capacity of 1218 mAh g−1 (discharge current density of 1.74 mA cm−2) with 80% capacity retention over 265 cycles, at room temperature (22 °C) and without applied pressure. Achieving such stability with high sulfur loading is a major step in the development of potentially commercial garnet lithium–sulfur batteries.Item Design principles for sodium superionic conductors(Nature Portfolio, 2023-11-22) Wang, Shuo; Fu, Jiamin; Liu, Yunsheng; Saravanan, Ramanuja; Luo, Jing; Deng, Sixu; Sham, Tsun-Kong; Sun, Xueliang; Mo, YifeiMotivated by the high-performance solid-state lithium batteries enabled by lithium superionic conductors, sodium superionic conductor materials have great potential to empower sodium batteries with high energy, low cost, and sustainability. A critical challenge lies in designing and discovering sodium superionic conductors with high ionic conductivities to enable the development of solid-state sodium batteries. Here, by studying the structures and diffusion mechanisms of Li-ion versus Na-ion conducting solids, we reveal the structural feature of face-sharing high-coordination sites for fast sodium-ion conductors. By applying this feature as a design principle, we discover a number of Na-ion conductors in oxides, sulfides, and halides. Notably, we discover a chloride-based family of Na-ion conductors NaxMyCl6 (M = La–Sm) with UCl3-type structure and experimentally validate with the highest reported ionic conductivity. Our findings not only pave the way for the future development of sodium-ion conductors for sodium batteries, but also consolidate design principles of fast ion-conducting materials for a variety of energy applications.