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Unsupervised discovery of solid-state lithium
ion conductors
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Although machine learning has gained great interest in the discovery of functional materials,

the advancement of reliable models is impeded by the scarcity of available materials property

data. Here we propose and demonstrate a distinctive approach for materials discovery using

unsupervised learning, which does not require labeled data and thus alleviates the data

scarcity challenge. Using solid-state Li-ion conductors as a model problem, unsupervised

materials discovery utilizes a limited quantity of conductivity data to prioritize a candidate list

from a wide range of Li-containing materials for further accurate screening. Our unsupervised

learning scheme discovers 16 new fast Li-conductors with conductivities of 10−4–10−1 S cm−1

predicted in ab initio molecular dynamics simulations. These compounds have structures and

chemistries distinct to known systems, demonstrating the capability of unsupervised learning

for discovering materials over a wide materials space with limited property data.
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The fast conduction of lithium (Li) ions in a solid is a
phenomenon of significant scientific interest and techno-
logical importance. The room-temperature Li-ion con-

ductivities (σRT) in poorly conductive and fast conducting
materials can differ by more than twenty orders of magnitude1,2.
The high σRT in electrode and electrolyte materials are essential
for high power/rate performance of batteries. In particular,
replacing the flammable liquid electrolyte used in commercial Li-
ion batteries with a fast Li-conducting solid electrolyte, to pro-
duce an all-solid-state battery, provides improved safety, excellent
stability, and long cycling life1,2. Although there are several
thousands of known lithium-containing compounds, fast Li+

conduction with σRT close to 10−3–10−2 S cm−1, comparable to
the level in liquid electrolytes, is a rare property held by only a few
solid-state Li-ion conductors (SSLCs), such as lithium thiopho-
sphates (e.g., Li7P3S113 and Li10GeP2S124, LGPS), garnet (e.g.,
Li7Li3Zr2O12

5, LLZO), NASICON (e.g., Li1.3Al0.3Ti1.7(PO4)36,
LATP), perovskite (e.g., Li0.5La0.5TiO3

7, LLTO), Li3N8, and
argyrodite9 (e.g., Li6PS5Cl) (Fig. 1a). Since these known SSLCs do
not meet all desired attributes required for the commercialization
of all-solid-state batteries10, there is significant interest in dis-
covering new SSLC materials with high σRT. The challenges in
predicting new SSLCs are largely a result of the diverse chemis-
tries and structures of SSLCs, and current computational pre-
dictions and laboratory syntheses are often performed on a
limited number of candidates1,2. SSLCs have compositions ran-
ging from oxides and sulfides to nitrides and mixed halides, and a
diverse set of crystalline structures including perovskite, argyr-
odite, garnet, and NASICON, and newly discovered structures,
such as LGPS and Li7P3S11. Over the past few years, first-
principles computation has played an important role in the
successful prediction of a number of novel SSLCs11–15. Recent
studies have determined a number of key physical factors
required for fast Li-ion diffusion, such as anion lattice packing13,
lattice dynamics16,17, frustration of the mobile-ion sublattice18,19,
and concerted ion migration14. So far, transforming a theory into
a predictive model to explore a vast composition-structure space
of many materials remains a significant challenge.

Machine learning (ML) has emerged as a technique for
materials discovery thanks to its capability of recognizing
complex patterns in data20–28 by representing materials with
critical descriptors such as the combination of chemistry,
composition, and crystal structure that yields desired materials
properties. While significant research progress has been
achieved by improving the materials descriptors over the
years29–37, the applications of ML for materials discovery is in
general plagued by two significant challenges. First, a ML model
requires training on a sufficient amount of data to capture the
correlation between a desired physical property and the features
of materials. Unfortunately, only a few select materials exhibit
the property of interest, as is often the case in materials dis-
covery. In many cases, even the data for materials with poor
properties is scarce, due to lack of interest in performing and
reporting these measurements. For example, most solids with
poor ionic conductivity do not have conductivity data. The
second challenge is that the parameterization of a ML model is
highly susceptible to variances and errors in property data38. In
the case of SSLCs, the conductivity obtained through experi-
mental measurements can vary by a few orders of magnitude
due to factors including synthesis method, sample preparation,
and measurement technique39. For SSLCs, it is challenging to
train a ML model of Li+ conductivity from only a few com-
pounds with known values of σRT with large variances and to
make reliable predictions for thousands of compounds. This
scarcity of high-quality property data greatly limits the applic-
ability of supervised ML models to capture and predict complex

structure-property relationships over a broader space of mate-
rials beyond known examples.

Unlike supervised learning models, which require well-labeled
training data, unsupervised learning can be readily applied to vast
datasets regardless of whether any properties or labels exist. As a
technique to draw inferences from features of data without
explicitly labeled properties, unsupervised learning has been
applied in materials science for feature extraction, pattern
recognition, clustering, and phase mapping40–44. However, the
application of unsupervised learning to directly discover new
materials with enhanced properties has rarely been explored27. As
shown in this study, unsupervised learning, through training on a
broad range of materials, can draw boundaries between good and
poor examples, identifying candidates similar to good examples,
which are then further verified by more accurate first-principles
calculations. This new approach using unsupervised learning for
materials discovery has multiple advantages. Switching the target
of ML from predicting the property (e.g., σRT) in supervised
learning to grouping materials in unsupervised learning alleviates
the issues of poor data quality and accuracy. Rather than pre-
dicting the targeted materials property accurately for each can-
didate, the output from unsupervised learning is a significantly
narrowed list of materials candidates for subsequent exploration
by more accurate first-principles calculations, thus significantly
reducing the cost for an expensive high-throughput first-princi-
ples screening by utilizing a limited quantity of low-quality data.
In addition, unsupervised learning uses unlabeled data and
readily expands the applicability of the ML model to the entire
materials space.

In this study, we propose an unsupervised learning scheme for
guiding materials discovery, and demonstrate it for materials
discovery of SSLCs. We apply unsupervised learning to screen all
known Li-containing compounds from the Inorganic Crystal
Structure Database. Our trained unsupervised learning models
cluster Li-containing compounds into groups of SSLCs with high
conductivity and other groups of materials with poor ionic con-
duction. Using ab initio molecular dynamics (AIMD) simulation
to quantify σRT for predicted compounds45, 16 new candidates
having σRT exceeding 10−4 S cm−1 are identified, and three of
them have σRT exceeding 10−2 S cm−1, on par with known SSLCs
with highest σRT. As proposed and demonstrated, our new
approach of ML-guided materials discovery circumvents the data
scarcity challenges, identifies new materials using a small number
of known examples, and provides unique insight on structure-
property relations.

Results
Scheme of the unsupervised discovery of SSLCs. We illustrate
our scheme of the unsupervised discovery of SSLC materials in
Fig. 1. In order to train the unsupervised model, a quantitative
representation of the complex materials structure (Fig. 1a) is
required as input. Instead of using a combination of hand-picked
features, we used digital diffraction patterns of the crystal struc-
ture. Specifically, a representation for each crystal structure was
built based on Bragg’s law to map the three-dimensional periodic
crystal lattice into a set of X-ray diffraction intensities at a fixed
set of 2θ values (Method and Fig. 1b)35,46,47. Here, we only
considered the anion lattice of the crystal structure, relying on the
knowledge that anion configuration and Li+-anion interactions
significantly affect Li sites, diffusion channels, and the energy
landscape of Li migration1,13,15. The anionic lattice was set to S
anion and was scaled to the same atomistic volume, so that the
representation was invariant to lattice parameter or the chemical
constituent (Method). The resulting representation, called mod-
ified X-ray diffraction (mXRD), is unambiguously defined for
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every anion lattice (Fig. 1b), fully capturing the anionic crystal
structure information. Here, we performed our unsupervised
discovery on 2986 compounds that contain lithium but not
transition metals. Since some compounds have the same struc-
ture, one representative structure was used. A dataset of 528
representative anionic structures and their mXRDs were per-
formed for the unsupervised learning (Method).

Unsupervised clustering of Li-containing compounds. We
performed clustering, a common unsupervised learning techni-
que, to group materials with similar mXRD representations. We
first generated a model (named C1) based on the agglomerative
hierarchical clustering method to train a bottom-up grouping
of the mXRD dataset (Method and Fig. 2a). The grouping sho-
wed a good quality of clustering as the mXRDs shared similar
characteristics within the same groups (Fig. 2d) and different
groups were well differentiated (Supplementary Note 1, Supple-
mentary Fig. 1 and 2). More importantly, a visible clustering of
SSLC materials is found using this model (Fig. 2b). Most
known SSLCs with σRT close to 10−3–10−2 S cm−1, despite being
structurally distinctive, were clustered into two groups in the
center of the dendrogram out of a total seven groups, including
LGPS, Li7P3S11, LLZO, and Li3N, in group VI, and argyrodite,
β-Li3PS4, LLTO in group V. LATP, as an exception in group VII,
lay close to the boundaries of group V and VII and its mXRD
pattern still exhibited some similarity with group V. In addition,
statistical analysis of σRT within the group quantitatively con-
firmed the correlation on σRT (Supplementary Note 1, Supple-
mentary Figs 3 and 4). The violin plot of σRT of group V and VI
showed significantly higher σRT (Fig. 2c), and the majority of
compounds outside of group V and VI had σRT significantly
below 10−4 S cm−1. A statistically significant difference of σRT of
the two groups V and VI versus the rest groups was proved by the
t-test (Supplementary Note 2).

As confirmed by quantitative correlation between the groups
and σRT, our unsupervised learning model captured the physical
dependence of fast solid-state Li+-diffusion on anion lattice. To
critically assess the robustness of clustering in capturing the
observed physical correlation, we performed three different
clustering techniques. In addition to the aforementioned model,
we trained a second model (named C2) to create a top-down
grouping by recursively applying divisive spectral clustering
(Method). These two models were purely based on the mXRD
dataset of anion lattices without seeing any labeled σRT
data. In our third grouping, the model (named C3) used the
limited available σRT information to optimize the clustering of
known SSLC examples (Supplementary Note 4). Despite the
differences in the clustering methodologies of three models, the
observed aggregation of fast-conducting examples was mostly
consistent. Known SSLCs largely overlapped among the groups
generated by these three models (Supplementary Notes 3–5,
Supplementary Table 1 and Supplementary Figs 5–9). In
particular, LGPS, Li7P3S11, LLZO, and Li3N were always
clustered to the same group by all three models. Our results
from three distinct models confirmed the reliability of
clustering fast-conducting versus poor-conducting materials
based on unsupervised learning using mXRD representations of
the structures.

Physical insights from unsupervised learning. The clustering of
SSLCs by mXRD provides new insight into the understanding of
crystal structures exhibiting fast-ion conduction. While Li-ion
diffusion in solids has been shown to correlate with various
parameters, such as lattice volume1, anion chemistry48, bond
ionicity25,48, phonon mode16,17, and Li coordination number25,
no single unified theory explains the similarity among highly
distinctive crystal structures of all SSLCs. Our unsupervised
clustering quantitatively confirmed the similarity among the
mXRD patterns of anion lattice of SSLCs. The mXRD encodes the
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symmetry and ordering of the anionic lattice and showed strong
correlation with ionic conductivity (Fig. 2). Given the information
of lattice volume and anion chemistry critical for ion diffusion
were removed from the mXRD descriptor, the resulted clustering
of Li-conducting phases suggests that the long-range periodicity
of the anion lattice as encoded in mXRD plays a fundamental role
in Li-ion diffusion. By analyzing the structural origin of the
clustered groups, (Supplementary Note 6), we found the materials
in Group I, II, and III correspond to highly symmetrical fcc (face
centered cubic), hcp (hexagonal close packed), and bcc anion
lattices, respectively. For these anion lattices, Li ions are sym-
metrically confined in highly symmetric tetrahedral or octahedral
sites of anions (as an example, Fig. 2e for Li2S), and migrate
among these well-defined sites13. Groups IV, V, and VI show a
moderate level of variance, which can be understood as mild
distortion of the anion lattices. The distortion of anion lattices
disturbs Li+ bonding environments and causes Li+ to deviate
from highly symmetric locations to geometrically frustrated
configurations. For example, in LGPS and LLZO, the distorted

anion polyhedra generate multiple positions to host Li ions,
observed as the spread Li-ion probability density observed in
AIMD simulations (Fig. 2e), which were represented as partially
occupied Li sites (e.g., Li1 and 96 h sites in LGPS and LLZO,
respectively) from diffraction experiments4,5. Having multiple
positions for Li+ to occupy may lead to a degeneracy of Li sub-
lattice energy and an entropically-enabled disordered-Li sub-
lattice migrating among metastable configurations18,19.
Therefore, as observed in their mXRD representations, the SSLCs
clustered in group V and VI exhibit the characteristics of mod-
erately distorted anion lattices, which is closely related to dis-
ordered Li sublattice for fast Li-ion conduction. The materials in
Group VII, as reflected by the high standard deviation of mXRD
peaks, correspond to the least symmetric and highly disordered
anion lattices (Supplementary Figs 10–12). The highly disordered
anion lattices in these materials may locally trap Li ions and
impede Li-ion percolation across the crystal structure (Supple-
mentary Fig. 13), resulting in the low conductivities observed for
compounds in this group.
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SSLC confirmed by AIMD simulations. Given the successful
clustering of known SSLC materials by unsupervised learning
models, the other structures clustered into the same
groups are expected to exhibit fast Li-ion conduction. To fur-
ther assess the conductivity of these compounds discovered
from the unsupervised grouping, we conducted AIMD simu-
lations, which have been demonstrated as a highly accurate and
predictive computation approach for calculating Li ion
conductivity11,14,15,45. From the screening of initial 2989
compounds from the ICSD, we narrowed the evaluation of the
ion-conduction property down to 82 unique compounds,
which were from the intersection of these fast-conducting
groups in the aforementioned three models. Thus, our unsu-
pervised learning scheme successfully reduced a high
throughput screening of thousands of compounds to a focused
exploration of <100 candidates with much higher success
probability. Among these, we rediscovered LiZnPS4, which was
previously discovered by the bcc-anion-packing rule and was
confirmed with an experimental σRT of 5.7 × 10−4 S cm−111–13.
According to AIMD simulations (Fig. 3), 16 more candidates
are predicted to have σRT higher than 10–4 S cm−1. In parti-
cular, three new materials systems, Li8N2Se, Li6KBiO6 and
Li5P2N5, have σRT exceeding 10−2 S cm−1, a conductivity
higher than that of the best known SSLCs. A list of these
materials and the calculated Li+ conduction properties are
summarized in Supplementary Tables 3–4 and Supplementary
Fig. 14. Figure 3 plots the predicted σRT and activation energy
of newly discovered SSLCs (filled symbols), in comparison with
σRT reported in the past few decades (open symbols, Supple-
mentary Table 2). The newly discovered SSLCs are in the upper
left corner of Fig. 3, which corresponds to high σRT of >10−5 S
cm−1 and low Ea of 0.17–0.45 eV. More importantly, these
SSLCs comprise new structures, chemistries, and compositions
significantly different from known SSLCs, demonstrating the
capability of our crystal-structure-based unsupervised learning
model to discover materials beyond existing chemistries.

Discussion
A fraction of compounds uncovered by our grouping did not
show fast Li-ion diffusion in AIMD simulations (Supplementary
Tables 5–7). Among these compounds, a majority exhibit too
small of a percolation radius for Li-ion migration, a blocking of
diffusion network by other cations, or a poorly connected diffu-
sion network. The inclusion of these compounds was attributed
to the fact that our unsupervised models were trained solely on
the anionic geometry without considering factors such as the
effects of other cations. In addition, some compounds with low
ionic conductivity may be further optimized via doping or tuning
Li concentration. Future extension of our scheme should attempt
to include features in addition to the anion lattice for more
accurate prediction.

For these Li-ion conductors to be utilized as solid electro-
lytes for solid-state Li-ion batteries, other materials properties,
such as electrochemical window, interface compatibility,
and mechanical properties1,2,10,15,16, are also required. We
employed the first-principles computation techniques estab-
lished in the previous studies10,15 to evaluate the thermo-
dynamic intrinsic electrochemical window of these newly
identified ion conductors (Supplementary Fig. 15). Consistent
with the general trend identified in the previous studies15,
most of the materials have limited electrochemical windows.
Many identified nitrides are stable with Li metal in agreement
with the previous computation study49, while other com-
pounds are not stable against Li metal or at low potential
due to the reduction of cations. The identified fluorides have a

very high oxidation limit of >6 V, which may be ideal for
stable protection of high-voltage cathodes. The oxides have
decent electrochemical windows but most have relatively low
ionic conductivities of ~10−4 S cm−1 (except for Li6KBiO6).
The identified sulfides have narrow windows but these
two sulfides may have significantly better air/moisture stability
than currently used thio-phosphates. In summary, while our
discovery does not identify an ionic conductor that out-
competes current solid electrolytes, the potential choices of
fast ion conductors with improvements in certain aspects
(such as stability against Li metal, high voltage, or air) are
predicted from the computation discovery. The properties and
applicabilities of these materials in solid-state batteries may
require further computational or experimental studies and
optimizations.

In summary, the unsupervised learning models succeeded in
distinguishing fast Li-conducting and poor Li-conducting
materials, leading to the prediction of sixteen new compounds
as solid-state Li-ion conductors with room-temperature con-
ductivities higher than 10−4 S cm−1 with a few new com-
pounds exceeding 10−2 S cm−1. These newly discovered
candidates have highly different structures and chemical com-
positions from current known fast Li-ion conductors, demon-
strating the effectiveness of our unsupervised learning approach
for discovering new materials over a wide materials space. This
novel unsupervised learning approach also reveals the unique
structure–property relationship between anion lattice and Li+

conduction over a large materials space. Whereas the supervised
learning has been widely adopted in the majority of machine-
learning studies for materials, our unsupervised learning scheme,
which narrows a high-throughput screening to a focused prior-
itized list by utilizing a limited amount of low-quality data,
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presents a different approach of using ML for materials discovery,
and is generally applicable for other physical properties.

Methods
Data preprocessing. The raw data of crystalline structures were exported from the
Inorganic Crystalline Structure Database (ICSD) in the format of cif files50. The
range of analysis in the current study includes all compounds containing Li but not
transition metal species, except Sc, Y, La, Ti, and Zr. The exclusion of transition
metal species is based on the consideration that compounds containing transition
metal ions are usually redox active and hence may not be suitable for application as
solid-state electrolytes. These filters yielded a total of 2986 ICSD entries (ver.
November 2016). The representative structures for each entry was identified either
as the “chemical_name_structure_type” flag in the cif files or as the chemical
formula if this flag was not set explicitly. The entries that were structurally similar
in the hierarchical clustering were further filtered to remove duplicates in the
training set. The final training set included 528 unique representative structures for
the unsupervised learning analysis.

Representation. The anionic sublattice of Li-containing compounds is uniquely
represented in the X-ray diffraction pattern based on Bragg’s law. For the dif-
fraction from (hkl) plane, the angle is determined by

2 sin θð Þ ¼ λ � d�1
hkl ð1Þ

where the interplane distance dhkl is a function of the size and shape of the unit cell

d2hkl ¼ h2a�2 þ k2b�2 þ l2c�2 þ 2hka�b� cos γð Þ þ 2hla�c� cos βð Þ þ 2klb�c� cos αð Þ
ð2Þ

The intensity is determined by the amplitude of light scattered from the lattice
plane

Fhkl ¼
Xm

j¼1

Njfjexp 2πiðhxi þ kyi þ lziÞ½ ð3Þ

where the sum runs over all atoms of the unit cell on (hkl) plane, Nj is the fraction
of every equivalent position that is occupied by atom j at coordinates (xj, yj, zj). The
scattering factor fj is a product describing the interaction of the X-ray with the
electrons around an atom. Using Eqs. 1, 2, and 3, the X-ray diffraction of a periodic
lattice is determined by the size and shape of unit cell, as well as the position and
identity of atoms on a given plane. The following procedure was employed to
obtain the XRD representation of the geometry of anion sublattice of the crystalline
structure. First, we removed all cations from the crystalline structure, keeping only
the anionic sublattice in the unit cell. Second, we substituted the remaining anions
for a unitary species (e.g., S2−), removing the influence of the scattering factor f on
the diffraction intensity. Third, the unit cell was isotropically expanded or
compressed to a pre-determined volume per anion of 40 Å3, removing the effect of
unit cell size on the position of the diffraction peaks. After these initial steps, the X-
ray diffraction of modified lattice encodes only information for the geometry and
topology of anion sublattice. The calculation of diffraction pattern is then
performed at a fixed set of 2θ values from 0 to 89.98° at a step size of 0.1° using the
pymatgen package51, generating a 900-dimensional vector for each diffraction
pattern51. We confirmed the results of hierarchical clustering was consistent when
the step size was increased to 0.02° (Supplementary Note 7). A Gaussian smearing
was then performed to normalize the integrated intensity of diffraction to a
unitary value.

Unsupervised learning. We used the Dendrogram function from the SciPy
package to perform agglomerative hierarchical clustering (AHC)52. In AHC, each
sample starts in its own cluster, and the clusters merge progressively according to
the similarity metric as one moves up the hierarchy. The output from AHC is a
bottom-up hierarchical tree diagram (dendrogram). The Euclidean distance (L2)
between two diffraction profiles was used as the similarity metric and Ward linkage
was used to measure the cluster dissimilarity53. The same clustering results were
also obtained using the hclust package in R.

In addition to the hierarchical clustering, we used the kernlab package in R to
perform spectral clustering. Spectral clustering uses the eigenvalues of the similarity
matrix of the data to divide the samples in to K groups, where K is a manually
selected integer54. To create hierarchical grouping results, we recursively applied
the bisectional divide (K= 2) on the larger portion from the previous grouping,
and obtained a divisive top-down hierarchical diagram after the clustering.

First-principles calculation. All Density Functional Theory (DFT) calculations
were performed using the Vienna Ab initio Simulation package (VASP) within the
projector augmented-wave approach and Perdew–Burke–Ernzerhof (PBE)
generalized-gradient approximation (GGA) functionals55–57. The parameters in
static DFT calculations were consistent with the Materials Project58. Ab initio
molecular dynamics (AIMD) simulations were performed in supercell models
using non-spin-polarized DFT calculations with a Γ-centered k-point. The time
step was set to 2 fs. The initial structures were statically relaxed and were set to an
initial temperature of 100 K. The structures were then heated to targeted

temperatures at a constant rate by velocity scaling during 2 ps. During the esti-
mation of Li ion diffusion, NVT ensemble using Nosé–Hoover thermostat was
adopted. The total time of AIMD simulations were in the range of 100 ps to 1000 ps
until the diffusivity was converged. The ionic diffusivity and conductivity were
calculated following established method in previous study45.

Data availability
The diffraction data and AIMD simulation results are available through GitHub
repository https://github.com/tri-na?tab=repositories. Other data generated during and/
or analyzed during the current study are available from the corresponding authors on
reasonable request.

Code availability
The code used for the creation of unsupervised learning models used in the manuscript
are available in the GitHub repository at https://github.com/tri-na?tab=repositories.

Received: 12 July 2019; Accepted: 24 October 2019;

References
1. Bachman, J. C. et al. Inorganic solid-state electrolytes for lithium batteries:

mechanisms and properties governing ion conduction. Chem. Rev. 116,
140–162 (2016).

2. Zhang, Z. et al. New horizons for inorganic solid state ion conductors. Energy
Environ. Sci. 11, 1945–1976 (2018).

3. Mizuno, F., Hayashi, A., Tadanaga, K. & Tatsumisago, M. New, highly ion‐
conductive crystals precipitated from Li2S–P2S5 glasses. Adv. Mater. 17,
918–921 (2005).

4. Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686
(2011).

5. Kumazaki, S. et al. High lithium ion conductive Li7La3Zr2O12 by inclusion of
both Al and Si. Electrochem. Commun. 13, 509512 (2011).

6. Aono, H., Sugimoto, E., Sadaoka, Y., Imanaka, N. & Adachi, G.-Y. Ionic
conductivity and sinterability of lithium titanium phosphate system. Solid
State Ion. 40/41, 38–42 (1990).

7. Ibarra, J. et al. Influence of composition on the structure and conductivity of
the fast ionic conductors La2/3−xLi3xTiO3 (0.03≤x≤0.167). Solid State Ion. 134,
219–228 (2000).

8. Li, W. et al. Li+ ion conductivity and diffusion mechanism in α-Li3N and β-
Li3N. Energy Environ. Sci. 3, 1524–1530 (2010).

9. Boulineau, S., Courty, M., Tarascon, J.-M. & Viallet, V. Mechanochemical
synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid
electrolytes for all solid state batteries application. Solid State Ion. 221, 1–5
(2012).

10. Zhu, Y., He, X. & Mo, Y. Origin of outstanding stability in the lithium
solid electrolyte materials: insights from thermodynamic analyses based on
first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693
(2015).

11. Richards, W. D., Wang, Y., Miara, L. J., Kim, J. C. & Ceder, G. Design of Li1
+2xZn1-xPS4, a new lithium ion conductor. Energy Environ. Sci. 9, 3272–3278
(2016).

12. Suzuki, N. et al. Synthesis and electrochemical properties of I4̅-Type Li1+2xZn1
−xPS4 solid electrolyte. Chem. Mater. 30, 2236–2244 (2018).

13. Wang, Y. et al. Design principles for solid-state lithium superionic conductors.
Nat. Mater. 14, 1026–1031 (2015).

14. He, X., Zhu, Y. & Mo, Y. Origin of fast ion diffusion in super-ionic
conductors. Nat. Commun. 8, 15893 (2017).

15. Nolan, A. M., Zhu, Y., He, X., Bai, Q. & Mo, Y. Computation-accelerated
design of materials and interfaces for all-solid-state lithium-ion batteries. Joule
2, 2016–2046 (2018).

16. Muy, S. et al. Tuning mobility and stability of lithium ion conductors based on
lattice dynamics. Energy Environ. Sci. 11, 850–859 (2018).

17. Muy, S. et al. Lithium conductivity and Meyer–Neldel rule in
Li3PO4–Li3VO4–Li4GeO4 lithium superionic conductors. Chem. Mater. 30,
5573–5582 (2018).

18. Kweon, K. E. et al. Structural, chemical, and dynamical frustration: origins of
superionic conductivity in closo-borate solid electrolytes. Chem. Mater. 29,
9142–9153 (2017).

19. Kozinsky, B. et al. Effects of sublattice symmetry and frustration on
ionic transport in garnet solid electrolytes. Phys. Rev. Lett. 116, 055901
(2016).

20. Ren, F. et al. Accelerated discovery of metallic glasses through iteration of
machine learning and high-throughput experiments. Sci. Adv. 4, eaaq1566
(2018).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13214-1

6 NATURE COMMUNICATIONS |         (2019) 10:5260 | https://doi.org/10.1038/s41467-019-13214-1 | www.nature.com/naturecommunications

https://github.com/tri-na?tab=repositories
https://github.com/tri-na?tab=repositories
www.nature.com/naturecommunications


21. Tran, K. & Ulissi, Z. W. Active learning across intermetallics to guide
discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal.
1, 696–703 (2018).

22. Lu, S. et al. Accelerated discovery of stable lead-free hybrid organic-inorganic
perovskites via machine learning. Nat. Commun. 9, 3405 (2018).

23. Yuan, R. et al. Accelerated discovery of large electrostrains in BaTiO3-based
piezoelectrics using active learning. Adv. Mater. 30, 1702884 (2018).

24. Xue, D. et al. Accelerated search for materials with targeted properties by
adaptive design. Nat. Commun. 7, 11241 (2016).

25. Sendek, A. D. et al. Holistic computational structure screening of more than
12 000 candidates for solid lithium-ion conductor materials. Energy Environ.
Sci. 10, 306–320 (2017).

26. Zhang, Y. & Ling, C. A strategy to apply machine learning to small datasets in
materials science. NPJ Comput. Mater. 4, 25 (2018).

27. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine
learning for molecular and materials science. Nature 559, 547–555 (2018).

28. Meredig, B. et al. Combinatorial screening for new materials in unconstrained
composition space with machine learning. Phys. Rev. B 89, 094104 (2014).

29. Behler, J. & Parrinello, M. Generalized neural network representation of high-
dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

30. Rupp, M., Tkachenko, A., Müller, K.-R., Lilienfeld, V. & Anatole, O. Fast and
accurate modeling of molecular atomization energies with machine learning.
Phys. Rev. Lett. 108, 058301 (2012).

31. Bartók, A. P., Kondor, R. & Csányi, G. On representing chemical
environments. Phys. Rev. B 96, 019902 (2012).

32. Schütt, K. T., Arbabzadah, F., Chmiela, S., Müller, K. R. & Tkatchenko, A.
Quantum-chemical insights from deep tensor neural networks. Nat. Commun.
8, 13890 (2017).

33. Ward, L. et al. Including crystal structure attributes in machine learning
models of formation energies via Voronoi tessellations. Phys. Rev. B 96,
024104 (2017).

34. Isayev, O. et al. Universal fragment descriptors for predicting electronic
properties of inorganic crystals. Nat. Commun. 8, 15679 (2017).

35. Ziletti, A., Kumar, D., Scheffler, M. & Ghiringhelli, L. M. Insightful classification
of crystal structures using deep learning. Nat. Commun. 9, 2775 (2018).

36. Zhu, L. et al. A fingerprint based metric for measuring similarities of
crystalline structures. J. Chem. Phys. 144, 034203 (2016).

37. Winter, R., Montanari, F., Noé, F. & Clevert, D. A. Learning continuous and
data-driven molecular descriptors by translating equivalent chemical
representations. Chem. Sci. 10, 1692–1701 (2019).

38. Park, J., Howe, J. D. & Sholl, D. S. How reproducible are isotherm measurements
in metal–organic frameworks? Chem. Mater. 29, 10487–10495 (2017).

39. Thangadurai, V., Narayanan, S. & Pinzaru, D. Garnet-type solid-state fast Li
ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727
(2014).

40. Balachandran, P. V., Theiler, J., Rondinelli, J. M. & Lookman, T. Materials
prediction via classification learning. Sci. Rep. 5, 13285 (2015).

41. Isayev, O. et al. Materials cartography: representing and mining materials space
using structural and electronic fingerprints. Chem. Mater. 27, 735–743 (2015).

42. Zhou, Q. et al. Learning atoms for materials discovery. PNAS 115,
E6411–E6417 (2018).

43. Long, C. J. et al. Rapid structural mapping of ternary metallic alloy systems
using the combinatorial approach and cluster analysis. Rev. Sci. Instrum. 78,
072217 (2007).

44. Kireeva, N. et al. Generative topographic mapping (GTM): universal tool for
data visualization, structure‐activity modeling and dataset comparison. Mol.
Inform. 31, 301–312 (2012).

45. He, X., Zhu, Y., Epstein, A. & Mo, Y. Statistical variances of diffusional
properties from ab initio molecular dynamics simulations. NPJ Comput.
Mater. 4, 18 (2018).

46. Iwasaki, Y., Kusne, A. G. & Takeuchi, I. Comparison of dissimilarity measures
for cluster analysis of X-ray diffraction data from combinatorial libraries. NPJ
Comput. Mater. 3, 4 (2017).

47. Park, W. B. et al. Classification of crystal structure using a convolutional
neural network. IUCrJ 4, 486–494 (2017).

48. Kraft, M. A. et al. Influence of lattice polarizability on the ionic conductivity in
the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I). J. Am. Chem. Soc.
139, 10909–10918 (2017).

49. Zhu, Y., He, X. & Mo, Y. Strategies based on nitride materials chemistry to
stabilize Li metal anode. Adv. Sci. 4, 1600517 (2017).

50. Hellenbrandt, M. The inorganic crystal structure database (ICSD)—present
and future. Crsytallogr. Rev. 10, 17–22 (2014).

51. Ong, S. P. et al. Python materials genomics (pymatgen): a robust, open-
source python library for materials analysis. Comput. Mater. Sci. 68, 314–319
(2013).

52. Jones, E., Oliphant, T. & Peterson, P. SciPy: Open source scientific tools for
Python. http://www.scipy.org/ (2001).

53. Murtagh, F. & Legendre, P. Ward’s hierarchical agglomerative clustering
method: which algorithms implement Ward’s criterion? J. Classfic. 31,
274–295 (2014).

54. Luxburg, U. V. A tutorial on spectral clustering. Stat. Comput. 17, 395–416
(2007).

55. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector
augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

56. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-
metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49,
14251–14269 (1994).

57. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-
energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186
(1996).

58. Jain, A. et al. The Materials Project: a materials genome approach to
accelerating materials innovation. APL Mater. 1, 011002 (2013).

Acknowledgements
CL thanks M. Zhang from Toyota Research Institute of North America, H. Yamasaki, Y.
Kawamura, Y. Kotani and M. Osaki from Toyota Motor Corporation, K. Takechi and R.
Asahi from Toyota Central R&D Laboratory for their support and suggestions. Y.M.
acknowledges the computational facilities from the University of Maryland super-
computing resources and the Maryland Advanced Research Computing Center
(MARCC).

Author contributions
C.L. and Y.M. supervised the project. C.L. conceived the idea of unsupervised learning for
materials discovery. Y.Z., Z.C. and C.L. performed the unsupervised learning and dis-
cussed the results with D.B. and T.M. Y.M. designed the computation workflow of AIMD
simulation and X.H., Q.B. and C.L. performed the AIMD simulation. C.L. and Y.M.
analyzed the results and wrote the manuscript with the help from A.N. and C.R. All
authors participated in discussing the results and finalizing the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
019-13214-1.

Correspondence and requests for materials should be addressed to Y.M. or C.L.

Peer review information Nature Communications thanks the anonymous reviewers for
their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13214-1 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5260 | https://doi.org/10.1038/s41467-019-13214-1 | www.nature.com/naturecommunications 7

http://www.scipy.org/
https://doi.org/10.1038/s41467-019-13214-1
https://doi.org/10.1038/s41467-019-13214-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Unsupervised discovery of solid-state lithium ion�conductors
	Results
	Scheme of the unsupervised discovery of SSLCs
	Unsupervised clustering of Li-containing compounds
	Physical insights from unsupervised learning
	SSLC confirmed by AIMD simulations

	Discussion
	Methods
	Data preprocessing
	Representation
	Unsupervised learning
	First-principles calculation

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




