Implementation Issues for Markov Decision Processes.

dc.contributor.authorMakowski, Armand M.en_US
dc.contributor.authorShwartz, A.en_US
dc.contributor.departmentISRen_US
dc.date.accessioned2007-05-23T09:35:49Z
dc.date.available2007-05-23T09:35:49Z
dc.date.issued1986en_US
dc.description.abstractIn this paper, the problem of steering a long-run average coat functional to a prespecified value is discussed in the context of Markov decision processes wish countable statespace; this problem naturally arises in the study of constrained Markov decision processes by Lagrangian arguments. Under reasonable assumptions, a Markov stationary steering control is shown to exist, and to be obtained by fixed memoryless randomization between two Markov stationary policies. The implementability of this randomized policy is investigated in view of the fact that the randomization bias is solution to a (highly) nonlinear equation, which may not even be available in the absence of full knowledge of the model parameter values. Several proposals for implementation are made and their relative properties discussed. The paper closes with an outline of a methodology that was found useful in investigating properties of Certainty Equivalence implementations.en_US
dc.format.extent835877 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/4488
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 1986-63en_US
dc.titleImplementation Issues for Markov Decision Processes.en_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR_86-63.pdf
Size:
816.29 KB
Format:
Adobe Portable Document Format