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1. INTRODUCTION:

Consider a Markov decision process (MDP) with countable state space S, action space U and
one-step transition mechanism P = (pzy (u)), as commonly understood in the literature [5, 14, 15] ; a

precise statement of the model and of the underlying assumptions is given in Section 2.

The discussion assumes the system performance to be quantified through a long-run average
cost criterion associated with some instantaneous cost c¢: S XU —IR. If the sequence of states
{X, }° describes the evolution of the system while the decisions are encoded in the sequence
{U, }°, then for every admissible control policy m, pose

— 1 "
J(7) === lim—=E" %) ¢(X;, U;) (1.1)
nfoo N i=1
with the usual meaning for the notation E”. The quantity J(7) represents a measure of system per-

formance when the policy 7 is in use.

Over the years, a great deal of effort has been devoted to characterizing and evaluating policies
which exhibit desirable performance properties with respect to the cost functional (1.1). These ques-
tions are typically (but not exclusively) formulated as optimization problems; they have been abun-
dantly studied and a variety of results are available in the literature, ranging from conditions for
existence to algorithmic solutions [5, 14, 15] . There, as in many other situations, analysis often
identifies the policy of interest to be a Markov stationary policy ¢ . Unfortunately, this Markov sta-
tionary policy is usually nof readily implementable (sometimes in spite of strong structural proper-
ties), with the encountered difficulties falling essentially into one of the two following categories:

(D1): The form of the policy ¢ is a function of the various parameters determining the statisti-
cal description of the model. The actual values of these parameters are often not available to the
decision-maker and need to be estimated as part of the system operation, possibly given some prior
distribution on the parameters. Non-Bayesian versions of this problem have been worked out for
specific control models, and the reader is referred to the survey paper by Kumar [6] and the mono-
graph by Kumar and Varaiya [7] for additional information on this subject.

(D2): Even in the event the actual parameter values are available, the Markov stationary policy
¢ may still not be implementable due to computational difficulties inherent to its definition. The
situation treated by Nain and Ross [12] is a good case in point, for there non-trivial off-line computa-
tions are required in order to actually compute the value of a bias that enters the definition of a
seemingly simple randomized policy.

This state of affairs very naturally suggests the formulation of the following implementation
problem whose discussion constitutes the main subject of this paper: If ¢ is a given Markov station-
ary policy, design an implementable policy « such that J(a) = J(g); such a policy o will be called
an implementation of g . Here, implementability of a policy is synonymous with the availability of an
algorithm which produces on-line control values, given available feedback and model information.

This question constitutes a broadening of the usual formulation of the adaptive control problem
for Markov chains, in both its direct and indirect versions [4, 7] . Since this problem is somewhat
amorphous in its stated generality, attention will be focused in this paper on the specific problem of
steering the cost (1.1) to a particular value. Versions of this problem arise naturally in the solution of
constrained MDP’s via Lagrangian arguments, as demonstrated by Ross [12. 13] and by others [8, 9]
in several specific instances. In all the constrained MDP’s considered in th- literature, at least to the



authors’ knowledge, the discussion proceeds according to the following arguments: Two Markov sta-
tionary policies ¢ and § are identifled which are optimal for some Lagrangian problem with the pro-
perty

J@) <V < J(@@) (1.2)

where V' denotes the value of the constraint. The constrained optimal policy g then turns out to be
a Markov stationary policy which solves the same Lagrangian problem as g and g but with
J(g)==V. In all known references, such a Markov stationary policy ¢ with J(¢9) =V is con-
structed by suitably randomizing between the policies ¢ and g. Simple memoryless randomization
at each step between the policies ¢ and § produces a one-parameter family of Markov stationary
policies {f 7, 0<9<1}. When the mapping n—J (f ") is continuous on the interval [0,1], there exists
at least one randomized strategy f " that meets the value V and its corresponding bias value 77* is
a solution of the equation J(f ") = V, # in [0,1], whence the policy ¢ = f " solves the constrained
MDP.

The determination of the optimal bias value n* requires the evaluation of the expression J(f 7
for all values of # in the unit interval [0,1], and this is a non-trivial task even in the simplest of situa-
tions, when all the parameter values are available [12] .

The general problem of steering the cost to some specified value is formulated in Section 3
under assumptions which are motivated by the situation encountered in constrained MDP’s. Here
too, the policy g that steers the cost to the prespecified value V suffers from similar implementation
difficulties. In order to remedy to them, several implementations are proposed which exploit the
structure of the obtained randomized steering policy, under the assumption that the policies ¢ and §
themselves are implementable. The properties of each proposed implementation are briefly reviewed.
The paper closes with Section 4 where a useful methodology is outlined for establishing that the per-
formance measure under both policies ¢ and o coincide. These ideas were found useful in studying
Certainty Equivalence policies.

A few words on the notation used throughout the paper: The notation IR stands for the set of
all real numbers, and the indicator function of a set A is denoted by I(A). For any mapping
h:S—IR,pose | h | :== sup |h(z)].

z

2. MODEL AND ASSUMPTIONS:

Assume the state-space S to be countable set and the control space U to be a complete separ-
able metric space. The one-step transition mechanism P is defined through the one-step transition
probability functions p,, (-} : U—IR which are assumed to be Borel measurable and to satisfy the

standard properties

0 < py (1) S 1, X3y (w) =1 (2.1)
Y

for all x and ¥ in S, and all v in U. The space of probability measures on U (when equipped with
its natural Borel o-field) is denoted by IM .

The canonical sample space



In this paper, all probabilistic elements are defined on a single sample space Q:=S X(U X §)®
which acts as the canonical space for the MDP (S, U, P) under consideration. The information
spaces {I, },° are recursively defined by IH =S and H, .;:=H, XU XS for all n=1,2,.... With
a slight abuse of notation, 2 is clearly identified with H .

A generic element w of the sample space € is viewed as a sequence {z,, Wy, Wy, * * - ) With z, in
S and blocks {w, };° in U XS. Each one of the blocks w, is decomposed into a ordered pair
(u, ,%, 4,), where u, and z, ., are elements of U and S, respectively. Moreover, for each n =1,2,..,,
an element A, in H, is uniquely associated with the sample w by posing
hy, =(z{, wy, Wy, * -, wWy_y), With h 1=z .

These quantities can be readily interpreted in the context of the situation described in the intro-
duction: As the sample w = (2, wy, wy, - ) is realized, the state of the system at time n is
represented by z,, and the decision-maker keeps track of the past system states z;, 1<z <n, and
past decisions u;, 1<7 <n . Thus, the controller has knowledge of the information vector h, which is
used to generate the control action u, implemented at time n. The selection of this control is done
according to a prespecified mechanism, which may be either deterministic or random, i. e., the con-
troller thus uses h, for selecting a probability measure in M .

The basic random variables

The coordinate mappings {U, },° and {X, },° are defined on the sample space {2 by setting
U, (W) :=u,, X, W) =z, n=1,2,...(2.2)
for all w in 2, with the corresponding information mappings {H, }* given by
H, (W) = (1, wy, Wy, "~ *, Wy_4) = hy n==1,2,...(2.3)
for all w in Q.

For each n=1,2,..., the mapping H,, generates a o-field F,, on the sample space 1, with

I, CJIF, ;. With standard notation, [F':== v FF, is simply the natural o-field on the infinite carte-
n=1

sian product IH ., generated by the mappings {U,, X, };°. The sample space Q is always equipped
with this o-field ' and in that event, the mappings {U, },° and {X, },° are all random variables
(RV) taking values in U and S, respectively.

The probabilistic structure

Since randomized strategies are allowed, an admissible control policy w is defined as any collec-
tion {m, }° of mappings n, : JH, —IM such that the mappings H, —[0,1]: h, —m, (A, h,) are JF, -
measurable for every Borel subset A of U. Here, 7, (v, h, ) is interpreted as the conditional proba-
bility distribution for selecting the control value at time 7, given that the information vector h, is

available to the decision-maker. Denote the collection of all such admissible policies by II.

Let p(+) be a fixed probability distribution on S and let P be the one-step transition Kernel
(pyy (u)) specified earlier. Under the assumptions made, the Kolmogorov Extension Theorem guaran-
tees the existence (and uniqueness) of a family {P”", ® € I1} of probability measures on the o-field F
which satisfies the following requirements (R1)-(R3), i. e., for every policy 7 in II,



(R1): Forall z,in S,

P X, =2,]=p(x,),

(R2): For all Borel subsets A of U,
PlUMm)YeA |F, |=mn,(A; H,), n=1,2,...
and

(R3): For all z and y in S,
P"[Xn+1:y Iana(Un)]:pX"y(Un) n=1,2,...

With these requirements (R1)-(R3), it is plain that x, (-, H, ) is a regular conditional distribution of
U, given I, , and that

P Xyu=y | F,)= [ m,(du; H)pyx ,(u) n—1,2,..(2.4)
U

for all z and y in .S. Motivated by (2.4), it is convenient to extend the notation (p,, (v )) to elements
of M, i. e., for every probability measure v in IM, the notation

Day (U) = .(’j. V(du )pzy(u) n=1,2,...(2.5)

is adopted for all z and y in S.

Subclasses of policies
A policy 7 in TI is said to be a Markov or memoryless policy if there exists a family {g, }*° of
mappings ¢, : S —IM such that
T (o, Hy )=g, (>, X},) P7-a.s. n=1,2,...(2.6)

In the event the mappings {g, },° are all identical to a given mapping ¢ : S —IM, the Markov policy
7 is termed stationary and can be identified with the mapping ¢ itself, as will be done repeatedly in
the sequel.

A policy = in IT will be said to be a pure strategy if there exists a family {f,, }1°° of mappings
fn: H,—U such that for every Borel subset A of U,

1 if f,(H,)EA
. L T_ n=1,2,...(2.7)
To (A Hy) = { 0 otherwise P'-a.s.

A pure policy 7 can thus be identified with the sequence of deterministic mappings {fn }1°°. A pure
Markov stationary policy 7 in IT is thus fully characterized by a single mapping f : S —U to which it
is substituted in the notation.

3. IMPLEMENTATIONS:

In this section, several proposals are made for obtaining an implementable control policy which

solves the problem of steering the cost to a given value.

Steering the cost to a prespecified value



The problem of interest here is to find a Markov stationary policy g such that J(g) = V, with
V' some real constant determined through various design considerations. The discussion assumes the
existence of two implementable Markov (possibly randomized) stationary policies ¢ and § such that

J@) <V < J(@) (3.1)

i. e.,, the Markov stationary policy g (resp. §) undershoots (resp. overshoots) the requisite perfor-
mance level V. For every # in the unit interval [0,1], the policy f " obtained by simply randomizing
between the two policies ¢ and § with bias 5 is the Markov stationary policy determined through
the mapping f 7: S —IM where

S z) =g, 2)+0-ng(, ) (3.2)
for all # in S. Note that for =1 (resp. #=0) the randomized policy f " coincides with § (resp. g ).
Owing to the condition (3.1), if the mapping n—J(f ") is continuous on the interval [0,1], then at

least one randomized strategy f 7 meets the value V' and its corresponding hias value 17* is a solu-
tion of the equation

J(fN =V, nin [0,1], (3.3)
whence ¢ = [ " steers (1.1) to the value V.

As pointed out in the introduction, solving the (highly) nonlinear equation (3.3) for the bias
value n* is usually a non-trivial task, even in the simplest of situations [12] . The implementations of
the policy ¢ which are defined below circumvent this difficulty by bypassing a direct solution of the
equation (3.3). All the proposed implementations az{an }1°° have the form

an (s Hy) =1, 7(, Xp)+(1-1,)a(, Xn ) n=1,2,...(3.4)

where {7, }° is some sequence of [0,1]-valued RV’s which play the role of “estimates” for the bias
value n*. It will become apparent in what follows that the quality of such a sequence of ‘‘estimates”
{n, }:° is not necessarily measured in terms of its possible convergence to the bias value 7", but
rather in terms of the proximity of J(«a) to V.

Implementation by steering sample costs

In order to define this implementation of the policy f ’7‘, define the sample costs {J, },° by

J, = % e (X;, Up). n=1,2,...(3.5)

i=1
From the very definition of the policy f " , it is expected that when using f 7,

lim Jy = J (] "y =V P" —as. (3.6)

under reasonable recurrence conditions on the Markov chain induced by the Markov stationary policy
f ’7‘. This seems to suggest that the value V could be achieved by keeping the sample cost values
{J, }° as closely as possible to the desired value V. The corresponding implementation agge
exploits this idea by alternating between the policies ¢ and g on the basis of the sign of {J, -V
Formally, the implementation & gge is defined as the admissible policy {agsc » }° in IT given by
(3.4) where



Nesen =1 J, < V] n==1,2,...(3.7)

This certainly defines an implementable policy since the values {J, },;°° can be recursively computed
upon observing the system.

The policy aggc was proposed by Ross [13] , without any analysis of its performance, in the con-
text of a simple constrained problem for two competing queues. Makowski [10] shows that
J (agsc) = V', not only for the situation considered by Ross but for more general MDP’s as well. In a
simple flow control problem [8] , Ma and Makowski obtain a similar result for threshold policies.
Finally, it should be clear that the sequence of {0,1}-valued “‘estimates” {ngsc, };° cannot converge
pathwise to the bias value 17*, and that such convergence can only take place in some weaker sense,
say in the sense of Cesaro convergence.

Implementation by mixing policies

In the event the cost J(g) and J(g) are readily computable, an alternate implementation can
be found in the one-parameter family {=(p), p E[O,l]} of mizing policies: For every p in [0,1], con-
sider a two-sided coin biased so that the events Head and Tail occur with probability p and 1-p,
respectively. To define the corresponding mixing policy n(p ), throw the coin exactly once at the
beginning of times, and this independently of the other randomness defining the operation of the sys-
tem. The policy #(p) is defined as the policy that uses g (resp. ¢ ) if the outcome is Tail (resp.
Head). It is plain that

J(n(p)) = (1-p)J(2)+pJ (¥) (3.8)

provided that J(g) and J(g) are defined as limits in (1.1). An easy computation now shows that the
mixing policy with mixing parameter p ¥ given by

p’ = _V_“ J(g) (3.9)

J(7)-J(g)
steers the cost to V. This certainly defines an implementable policy & 4y under the computability
assumption made earlier; the calculations involved in the determination of the mixing parameter are
trivial, in contradistinction with what is typically needed for evaluating the bias n*. It is noteworthy

that this policy o yrx is also of the form (3.4), the sequence {n yx » };° being given by
Numx n = U n=1,2,...(3.10)

Here U denotes a {0,1}-valued RV defined on the (augmented) sample space 2X[0,1], with
P™MU = 1] = p" under any policy .

The idea of mixing policies was originally proposed by Altman and Shwartz [1] for a problem of
competing queues with a single constraint; the general formulation is wvailable in [9] . Interestingly
enough, in some constrained MDP’s with multiple constraints, the idea of mixing policies can be used
to determine a constrained optimal solution by solving a linear programming problem; this approach
is taken by Altman and Shwartz [1] for the same problem of competing queues.

Implementation by time-sharing policies
The reader will observe that mixing policies are not strictly speaking admissible policies in II as
defined in Section 2, owing to the initial randomization. The second drawback suffered by the policy

appx, Possibly the most severe one, at least from an operational standpoint. lies in the fact that the



sample costs {J,, },;*° cannot be expected to converge pathwise to V.

To improve on these structural deficiencies of the mixing policy oy, consider the situation
where the Markov chains induced by both g and § are positive recurrent. If z, denotes some
privileged state in S, define a cycle as the time interval T between consecutive visits to the state z .
The expectation of a cycle under policies ¢ and g are denoted by T =FE4T and T :=FE7 T,
respectively.

For every r in [0,1], consider two sequences of non-negative integers {n;},° and {7; }, with
the property that

}iTrglo n(J)=o00 and }1Tr(r)1o Zg; r (3.11)
where the notation
J J
all)= 2 n;, i(J)=3 7, n(J)=n()+r(]) (3.12)
i=1 i=1

is used for all J in IN. The discrete-time axis is divided into contiguous control frames, the (J +1)
such control frame starts upon completion of the n (J)"' cycle and is made up of ny,; + %y, cycles.
The policy aps(r) is defined as the policy in IT that during the J% frame first operates g for my
cycles and then operates g for n; cycles. It follows from well-known properties of return times for

Markov chains, that

. (1-r)TJ(g)+rTJ(G)
mJ, — J =
nIL n (ops(7)) ()T T

(3.13)

where the first convergence in (3.13) takes place (under weak conditions) in the P®S.as. sense.

Now, for every p in [0,1], let r (p ) be the element of [0,1] uniquely determined through the rela-

tion
= r ()T —. (3.14)
(-r (p )T +r(p)T
It is plain from (3.13)-(3.14) that
J(ons(r (p ) = LI @I ITT ) — iy ) (3.15)

(1-r (p NI +r (p)T

where the second equality follows from (3.8). In short the policies 7(p ) and arg(r (p)) both achieve
the same cost, and in particular, the policy anpg(r (p )) with p given by (3.9) steers the cost (1. 1) to
V. An easy computation that combines (3.9) and (3.14) readily shows that the value r * =r (p "y is
given by

TJ(@)-V]+I[V-Jl

The implementability of this time-sharing policy depends only on the availability of the costs values

and mean return times under the given policies ¢ and ¢ .

The reader will note that the policy & pg(r *) can also be put in the form (3.4) with the sequence

{1 1s o }i° being given this time by



n=1,2,...(3.17)

o if 7y <n <oy for someJ =1,2,...
1 1 ifo;<n <7, for someJ =1,2,...

Here the I, -stopping times {7, },° and {0 },*° are defined as the time epochs at which the J* con-
trol frame starts and the control policy switches from g to g (in the J* control frame), respectively.
Although the sequence {n g , },°° will certainly not converge pathwise, it is expected to converge in
some distributional sense to a Bernoulli RV with parameter p * given by (3.9).

The time-sharing implementation was introduced by Altman and Shwartz [1] for solving a con-
strained MDP with multiple constraints associated with a system of competing queues.

Implementation by Certainty Equivalence policies

In many situations of practical interest, it is possible to design (simple recursive) schemes for
estimating the value n° which solves (3.3). In that case, the Certainty Equivalence Principle is
naturally invoked for defining the so-called “naive feedback” policy acg. Such a policy is of the form
(3.4) where the sequence of estimates {n, };° is the one generated through the given estimation
scheme. It is hoped that the effects of controlling and learning about the system will combine to pro-
duce a (weakly) consistent estimation scheme. In such a case, the sequence of estimates {n,, }1°° con-
verges to the value 17* in some sense, thus providing increasingly better approximations to it. Cer-
tainty Equivalence implementations (as defined here) are intrinsically different from the other imple-
mentations introduced earlier in this section, despite their common form (3.4). Indeed, the estimation
schemes that appear in Certainty Equivalence implementations, exist independently of the policies
used, and are selected with the hope that the estimates {1, }° converge to the bias 5" .

At this point, the reader may wonder as to how such an estimation scheme can be selected. The
remainder of this section is devoted to some of the approaches taken in the literature:

(i): Sometimes, it is feasible to compute the bias value n* as an explicit function 5" () of some
external parameter @ whose value is not available to the decision-maker. In that case, in the spirit of
indirect adaptive control [4, 7] , the designer may want to consider using the Certainty Equivalence
Principle in conjunction with a parameter estimation scheme, say based on the Maxtmum Likelihood
Principle or the Method of Least-Squares, i. e., if the parameter estimates are given by {0, },°°, then
the estimates {9, },° are simply determined by 75, = n"(8,) for all n=1,2,... This program has
been carried out by the authors for a variety of situations, including problems of server allocation in
models of competing queues [16, 17] and problems of flow control in discrete-time M | M |1 systems
(8] .

(i): In many applications, the function 7—J (f ") turns out to be confinuous and strictly mono-
tone, say increasing for sake of definiteness. The search for 77* can then be interpreted as finding the
zero of the continuous, strictly monotone function n—J (f -V and this brings to mind ideas from
the theory of Stochastic Approzimations. Here, this circle of ideas suggests generating a sequence of

bias values {5, },*° through the recursion

1
M1 — [fln + an+1(v“c (17n+1' Un+1)] ]0 n—1,2,...(3.18)

with 7, given in [0,1]. In (3.18), the notation ( z )g == OV (z A 1) is used for every z in IR, and the

sequence of step sizes {a, }° satisfies



oo o]
0<a, |0, 3 a, =00, ¥ |ay -0 | <o0 (3.19)
n=1 n =1
Certainty Equivalence controllers based on Stochastic Approximation schemes such as (3.18)-(3.19)
can be viewed as indirect adaptive contro! schemes; they have been studied by the authors for the
models mentionned earlier (8, 17] .

4. A CONVERGENCE RESULT:
The design of Certainty Equivalence implementations raises the following natural questions:
Which notion of convergence in the space of policies is appropriate?
Which systems lend themselves to Certainty Equivalence type controllers?

To this date, no general answers are available on these questions. However, in a variety of situations
studied in the references [8, 16, 17] , a useful methodology was developed for establishing the perfor-
mance of Certainty Equivalence policies. This section summarizes the approach taken in these spe-
cial cases, with the results being given in as generic a form as possible to emphasize the broad appli-
cability of the proposed methodology. The underlying idea is due to Mandl [11]) who introduced it in
his seminal paper on the (optimal) adaptive control of finite-state Markov chains. The discussion
given here provides an extension of this idea to the case of unbounded costs over countable state-
spaces and randomized policies. A detailed exposition of the method is given by the authors in the
context of a discrete-time mode! for competing queues [18] to which the reader is referred for additi-
tonal information.

A convergence condition

The effect of two different admissible policies, say o and £, on the chain transitions is captured
simply by the differences

Pay ((Hy )) = poy (B(HW ) = [ poy (w)loddu; Hy) ~ Adu s H,)) n=1,2,...(4.1)
U

for all # and y in S. It is expected, maybe somewhat naively, that if this effect (4.1) becomes negli-
gible in time, then the sample cost sequence {Jn }1°° will have same limiting behavior under both pro-
bability measures P® and P2 Roughly speaking, it is anticipated, of course under appropriate
technical conditions, that “convergence of the controls” should imply ‘“‘convergence of the cost’ in

some sense.

The methodology outlined below indicates that such a result is indeed possible under reasonable
convergence assumptions. This approach is well suited (but not limited) to studying the cost perfor-
mance of Certainty Equivalence policies when convergence of the corresponding estimates {5, };* to

n* can he directly established by independent problem-specific arguments.

Throughout this section, let ¢ denote a fixed Markov stationary policy in II, and let o be a
second admissible policy. The comments made earlier motivate the following notion of convergence
in the space of policies: The policy « is said to satisly the convergence condition (C) with respect to
the Markov stationary policy ¢ if the sequence of (signed) random  measures
{a, (s H, ) — g (+; Xy )} converges weakly (2] in probability to zero, i. e., for every bounded continu-

ous function f : U — R,



n —co

ﬁmP“[Iff(uHaAmuEJ—gwuﬂ;H|>é]=0 (42)
U

for every €>0. If ¢ and « are given by (3.2) and (3.4), respectively, then (4.2) reduces to

lim P¢
n -0

U

0=, | Iff(u)[?(du;Xn)—a(du;Xn)ll>6}=0. (4.3)

and roughly speaking, condition (C) is seen to hold provided the sequence of estimates {nn }1°° con-
verges to 17* at least in probability under P“.

The discussion starts with the following version of a standard result in the theory of MDP’s
with lon-tun average criterion ( [14] , Thm. 6.17, pp. 144-145)

Lemma 4.1. If the mapping h : S — IR and the constant J solve the equations

h(@)+d = 33 [poy (@)l (y)+e (3, w)) g (du; 2) (4.4)
y U
for all z in S under the conditions
ES [|h(X,,)| ] < oo n—1,2,...(4.5a)
and
lim LE?[h(X,)] =0, (4.5b)
n—oo N
then necessarily
n
J = J(g)= lim LE? ¥} ¢(X;, U). (4.6)
n—oo N {=1

Proof: The convention (2.5) for the transition probabilities allows a rewriting of (4.4) in the form

h(X;)+J = E9 [h(X; ) | I Hc (X5, U;), i=1,2,...(4.7)
and a direct iteration then gives
n
EV[h(X)+nd = E¢ [h(X, DHE [ Y c (X, U)). n=1,2,...(4.8)
i=1
The result now follows readily upon dividing by n in (4.8) and letting n go to infinity. 0O

Bounded costs

When the cost function ¢ is bounded, arguments similar to the ones given in Section 6.7 of the
monograph by Ross [14] can be used to prove the existence of a solution pair (h,J) which satisfies
the conditions of Lemma 4.1. Such argument assumes the existence of a privileged state in S, say
2, which is positive recurrent under g. The return time to the state z, is defined as the F, -

stopping time 7 given by



r:=1inf {n>1:X(n) =1z, }. (4.9)
The following technical conditions (H1)-(H3) can now be defined, where
(H1): The finiteness condition
Z()=FE'[r| X,=2] < o
holds for all z in S;

(H2): The boundedness condition
sup E'? [Z(Xn)] < 00
n

holds, and
(H3): The tntegrability condition

3 Pey(9)2(y) < o0

¥

holds for all y in S'.

The hypotheses (H1)-(H3) are clearly satisfied when the state space S is finite. The authors have also
verified these hypotheses in a variety of problems where the state-space is nof finite, including the
competing queue problem [18] and a flow control problem for discrete-time M IM | 1 systems (8] .
In the proposed set-up, the arguments establishing Lemma 7.2 of [18] lead to the following result

Lemma 4.2. Under the assumptions (H1)-(H3), there exist a mapping b : S — IR and a constant J
which satisfy (4.4)-(4.5) and the bound

|h(z)]| < CZ(2) (4.10)
for all z in S, with some C >0.

For the remainder of this section, the conditions of Lemma 4.1 are assumed to hold, i. e., there
exists a pair (h,J) satisfying (4.4)-(4.5), together with the additional condition (H4), where

(H4): The sequence of RV’s {h (X, )}, is integrable under both P¢ and P“.

The sequences {®, },;° and {Y,, };*° of IR-valued RV’s are now defined to be
o, = FE*h (X, )| F,] - E°h(X,40) | Fy) n=1,2,...(4.11)
and
Y, =h(X,4y) - B (X, ) | F) n=1,2,...(4.12)
with Y, = h(X,) - E®lh (X ))); these definitions are well posed under the integrability assumptions
(H4). With these definitions, the argument proposed by Mandl [11] takes the form
h(X))+J(g) = ~@;-Y;+h(X; )+ (X;, Up) i=1,2...(4.13)

Ve

upon adding and substracting both RV’s E%[h (X
(4.7). Iteration of (4.13) implies the relation

i+1) | F;) and h(X;,) on the right handside of



I, =J(g) + %Ed),- + %2 Y; - i( h(X,.) - h(X)) ) n=1,2,...(4.14)

i=1 i=1 n

which is key for establishing J (a) = J(g).

Theorem 4.1. Assume there exists a pair (h ,J) which satisfies the conditions of Lemma 4.1 together
with the condition (Hf). If the convergences

%,-él Y; —o0 in expectation under P* (4.15a)
%[ (X, ) — (X)) ] -0 in expectation under P (4.15b)
1 . :
;ig;bi —0 in expectation under P (4.15¢)
take place, then
J@) = lm B % ¢ (X, U) = J(o) (4.16)

Note that if the convergences (4.15) are in Li,F P %), instead of being only in expectation under
P, then the convergence (4.16) of the sample cost sequence {J, },* is also in L (Q,F ,P%).

The verification of the convergences (4.15) often turns out to be a fairly technical task which
depends heavily on the problem at hand. As will become from the discussion given below, many of
the difficulties are related to the fact that the state space S may nof be finite, and the RV’s of
interest therefore not necessarily bounded. The convergence proof typically proceeds along the fol-
lowing lines.

(4.15a): The very definition of the RV’s {Y, };* implies E%Y, = 0 for all n =1,2,..., whence
the convergence (4.15a) is automatic.

(4.15b): This convergence is obtained, for example, when S is finite. More generally, it can also
be established under the conditions (H1)-(H3) provided the bound

sup E“ [Z (X,) ] < o0 (4.17)

holds, by virtue of (4.10).
(4.15¢): Suppose first that S is finite. In that case, (4.11) takes the form

# =S hW) [ pxy ) [a,,wu,Hn) - g(du,Xn)] =12, .(4.18)
Yy

with the sum being finite. If the one-step transition probability functions p,y, (+) : U —IR are conifinu-

ous for all z and y in S, a property assumed hereafter, then condition (C) and the finiteness of S

imply lim &, = O in probability under P Moreover, the RV’s {®, }; form a sequence of bounded
n

RV’s (since S is finite), thus are uniformly integrable under P® (3] , and the convergence (4.15¢) also
takes place in LY(Q,JF' ,P %), as well as in expectation under P %



When S is not finite, the arguments are more involved and require bounds on the sequence of
RV’s {h(X,)}°, as well as tightness conditions on the state sequence {X, },°. One possible set of
such conditions is formulated as condition (H5), where

(H5a): The RV’s {X,, },>° form a tight sequence under the probability measure P %, i. e., for every
€>>0, there exists a finite subset I, of S such that

sup P X, &K,.] <,
n

(H5b): The RV’s {h (X, )} are uniformly integrable under the probability measure P %, and
(H5c): The RV’s {(h (X, ), P In | INY,® are uniformly integrable, where the policy (a | n | g)is

defined by the sequence {al, Oy, oo, Oy 4, 0,9, =" } for all n =1,2,..., i. e,

lim sup E"[E-" [ R ) 1] 1 hXas) | B ] | Iy ”:0

or equivalently,

lim sup E¢ 3 k)| [ px,y(w) g(du, X,) | =o0.
Bl n y:lh(y)| >B v

Such conditions are typically verified by establishing bounds on the moments of the sequences of
RV’s {X, }*° and {h (X, )}, respectively, over some larger, but easier to handle, class of policies
[18] , or by using the specific structure of the policies g and o [8] .

T'o proceed in the discussion, observe that

e, =3 hy) A (X, ¥). n=1,2,...(4.19)
v
where the RV’s {A, (z,y)},>° are defined by

Ay (z,y) = {] Dzy (v) [an (du, H,) - g(du, X,) ] n=1,2,...(4.20)

for all z and y in 5. Two situations then naturally arise.

If h is bounded, the representation (4.20) implies
I ®, | < | h | > | An (X)) l <2 | h t n=1,2,...(4.21)
y
and therefore for every €¢>0, with Ke a finite subset of S entering the tightness condition (H5a), it

follows that

Eft| @y [1< [ |ECI[X, € K] max 3] | an(z.y)|1+2lh | POLX, €K ]

€ ¥

< el S BTN Y [a@y)|+2]h e n==1,2,...(4.22)
z € K, y

With the enforced continuity assumption on the one-step transition probability functions, condition
(C) implies lim | A, (z,y)| =0 in probability under P for all  and y in S, and the Bounded
n

Convergence Theorem thus gives



lim EY Sy |Aa(zy)|l=0 (4.23)
Y

owing to the bound (4.21). It is now clear from (4.22)-(4.23), since ¢ is arbitrary, that
lim E%[|®, |]=0.
n

If h is not bounded, define the sequence {®,5}® of IR-valued RV’s for every B >0, where

= B [h(G  [ |R QG ) | SB I Fy | = B (A6 I R (G0 | <B 1, |

n=1,2,...(4.24)
For every B >0, it is clear that
E°*l|®, |1 <E| @2 | HE | h(X, )| I | h(X,4) | >B ]

B (B DG ) T h K, | =B 1 F,] ] n=12,(425)
and use of the uniform integrability assumptions (H5b)-(H5c¢) readily implies
E°l|®, || < E*| 22| +ep n=1,2,...(4.26)
with li1r3n €p ==0 monotonically as B Joco. By the first part of the argument (for & bounded), the con-
vergence li;n E%| <I>,f3| ] = 0 takes place for every B >0, and therefore lim E*[| @, |] < €p, the
n

conclusion lim E*[| @, |] = 0 being now immediate.
n

Note that under (H5), the RV’s {®, },°° are uniformly integrable under P %, and the convergence
(4.15¢) therefore takes place in the stronger L '(Q,[F ,P®) sense, as does the convergence (4.15b). To
obtain LY(Q,F ,P% convergence in (4.16), such convergence in (4.15a) needs to be established. It is
plain from the definition (4.12) that the sum in (4.15a) forms a (P IF, ) -martingale and the Law of
Large Numbers for martingales ( {11] , Theorem 3), the so-called Stability Theorem, thus yields the
desired convergence under the condition

2
n =1 n

00 2
E“[ by —I—Y—"—I—] < 00. (4.27)

These remarks can be summarized in the following proposition.

Theorem 4.1 Assume the conditions (H1)-(H5) to hold and the one-step transition probabilities to be
continous. Whenever the policy a satisfies the convergence condition (C) with respect to the policy g,
the convergences (4.15) take place in expectation under P®. Morcover, if ({.28) holds as well, then the
convergences (4.15) take place in LY(Q,IF ,P%).

Unbounded costs

When the cost ¢ is not bounded, it may not be possible to establish the existence of a pair
(h,J) that satisfies the conditions (4.4)-(4.5) of Lemma 4.1. AS shown by the authors (18] , an
indirect route can be taken in such a case by imposing a uniform integrability condition on the
sequence {c¢ (X, , U,)}° under P® This condition provides a means to carry out a standard



s

truncation argument: The one-step cost is first approximated by a sequence of bounded costs
obtained by truncating the original (unbounded) cost. Assumptions are imposed so that the previous
arguments, which culminated in a version of Theorem 4.1, apply on each one of the truncated costs.
A double limiting argument is then validated through the uniform integrability condition on the
sequence {¢ (X,,, U,)};°°. This approach can be summarized in the following

Theorem 4.2. Assume conditions (H1)-(H5) to hold, coniinuity of the one-step transition probabili-
ties and uniform integrability of the RV’s {c¢ (X, , U, )} ° under P®. Whenever the policy o satisfies
the convergence condition (C) with respect to the policy g, the convergences (4.15) take place in
expectation under P*. Moreover, if (4.27) holds as well, then the convergences (4.15) take place in
LYQ,JF ,P?%), and so does the convergence in (4.16).
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