High Frequency Electrical Transport Properties of Carbon Nanotubes

Loading...
Thumbnail Image

Files

Publication or External Link

Date

2010

Citation

DRUM DOI

Abstract

Carbon nanotubes (CNTs) have extraordinary electronic properties owing to the unique band structure of graphene and their one-dimensional nature. Their small size and correspondingly small capacitances make them candidates for novel high-frequency devices with cut-off frequencies approaching one terahertz, but their high individual impedance hampers measurements of their high-frequency transport properties. In this dissertation, I describe the fabrication of carbon nanotube Schottky diodes on high-frequency compatible substrates and the measurement of their rectification at frequencies up to 40GHz as a method of examining the high-frequency transport of individual CNTs despite their high impedance. The frequency dependence of the rectified signal is then used to extract the Schottky junction capacitance as a function of applied bias and ambient doping and to look for resonances which might be a signature of a room-temperature Luttinger Liquid.

Notes

Rights