Capacity of the Gaussian Arbitrarily Varying Channel.
dc.contributor.author | Csiszar, Imre | en_US |
dc.contributor.author | Narayan, P. | en_US |
dc.contributor.department | ISR | en_US |
dc.date.accessioned | 2007-05-23T09:43:50Z | |
dc.date.available | 2007-05-23T09:43:50Z | |
dc.date.issued | 1989 | en_US |
dc.description.abstract | The Gaussian arbitrarily varying channel with input constraint GAMMA and state constraint LAMBDA admits input sequences x = ( x_1,... , x_n) of real numbers with (1/n){SIGMA x_i sup 2} < GAMMA and state sequences s = (s_1,... , S_n) of real numbers with (1/n) {SIGMA s_i sup 2} < GAMMA, the output sequence being x + s + V where V = (V_1, ... , V_n) is a sequence of independent and identically distributed Gaussian random variables with mean 0 and variance ({LITTLE SIGMA} sup 2). We prove that the capacity of this arbitrarily varying channel for deterministic codes and the average probability of error criterion equals 1/2 log ( 1 + r/(LAMBDA + {LITTLE SIGMA} sup 2)) if LAMBDA < GAMMA and is 0 otherwise. | en_US |
dc.format.extent | 744081 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | http://hdl.handle.net/1903/4899 | |
dc.language.iso | en_US | en_US |
dc.relation.ispartofseries | ISR; TR 1989-53 | en_US |
dc.title | Capacity of the Gaussian Arbitrarily Varying Channel. | en_US |
dc.type | Technical Report | en_US |
Files
Original bundle
1 - 1 of 1