Capacity of the Gaussian Arbitrarily Varying Channel.
Capacity of the Gaussian Arbitrarily Varying Channel.
Loading...
Files
Publication or External Link
Date
1989
Authors
Advisor
Citation
DRUM DOI
Abstract
The Gaussian arbitrarily varying channel with input constraint GAMMA and state constraint LAMBDA admits input sequences x = ( x_1,... , x_n) of real numbers with (1/n){SIGMA x_i sup 2} < GAMMA and state sequences s = (s_1,... , S_n) of real numbers with (1/n) {SIGMA s_i sup 2} < GAMMA, the output sequence being x + s + V where V = (V_1, ... , V_n) is a sequence of independent and identically distributed Gaussian random variables with mean 0 and variance ({LITTLE SIGMA} sup 2). We prove that the capacity of this arbitrarily varying channel for deterministic codes and the average probability of error criterion equals 1/2 log ( 1 + r/(LAMBDA + {LITTLE SIGMA} sup 2)) if LAMBDA < GAMMA and is 0 otherwise.