Modeling sediment diagenesis processes on riverbed to better quantify aquatic carbon fluxes and stocks in a small watershed of the Mid-Atlantic region

dc.contributor.authorQi, Junyu
dc.contributor.authorZhang, Xuesong
dc.contributor.authorLee, Sangchul
dc.contributor.authorWu, Yiping
dc.contributor.authorMoglen, Glenn E.
dc.contributor.authorMcCarty, Gregory W.
dc.date.accessioned2021-04-05T16:43:17Z
dc.date.available2021-04-05T16:43:17Z
dc.date.issued2020-07-06
dc.description.abstractDespite the widely recognized importance of aquatic processes for bridging gaps in the global carbon cycle, there is still a lack of understanding of the role of riverbed processes for carbon flows and stocks in aquatic environments. Here, we added a sediment diagenesis and sediment carbon (C) resuspension module into the SWAT-C model and tested it for simulating both particulate organic C (POC) and dissolved organic C (DOC) fluxes using 4 years of monthly observations (2014–2017) in the Tuckahoe watershed (TW) in the U.S. Mid-Atlantic region. Sensitivity analyses show that parameters that regulate POC deposition in river networks are more sensitive than those that determine C resuspension from sediments. Further analyses indicate that allochthonous contributions to POC and DOC are about 36.6 and 46 kgC ha−1 year−1, respectively, while autochthonous contributions are less than 0.72 kgC ha−1 year−1 for both POC and DOC (less than 2% of allochthonous sources). The net deposition of POC on the riverbed (i.e., 11.4 kgC ha−1 year−1) retained ca. 31% of terrestrial inputs of POC. In addition, average annual buried C was 0.34 kgC ha−1 year−1, accounting for only 1% of terrestrial POC inputs or 3% of net POC deposition. The results indicate that about 79% of deposited organic C was converted to inorganic C (CH4 and CO2) in the sediment and eventually released into the overlying water column. This study serves as an exploratory study on estimation of C fluxes from terrestrial to aquatic environments at the watershed scale. We demonstrated capabilities of the SWAT-C model to simulate C cycling from uplands to riverine ecosystems and estimated C sinks and sources in aquatic environments. Overall, the results highlight the importance of including carbon cycle dynamics within the riverbed in order to accurately estimate aquatic carbon fluxes and stocks. The new capabilities of SWAT-C are expected to serve as a useful tool to account for those processes in watershed C balance assessment.en_US
dc.description.urihttps://doi.org/10.1186/s13021-020-00148-1
dc.identifierhttps://doi.org/10.13016/yqtc-p7up
dc.identifier.citationQi, J., Zhang, X., Lee, S. et al. Modeling sediment diagenesis processes on riverbed to better quantify aquatic carbon fluxes and stocks in a small watershed of the Mid-Atlantic region. Carbon Balance Manage 15, 13 (2020).en_US
dc.identifier.urihttp://hdl.handle.net/1903/26943
dc.language.isoen_USen_US
dc.publisherSpringer Natureen_US
dc.relation.isAvailableAtCollege of Agriculture & Natural Resourcesen_us
dc.relation.isAvailableAtEnvironmental Science & Technologyen_us
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_us
dc.relation.isAvailableAtUniversity of Maryland (College Park, MD)en_us
dc.subjectPOCen_US
dc.subjectDOCen_US
dc.subjectSediment diagenesisen_US
dc.subjectResuspensionen_US
dc.titleModeling sediment diagenesis processes on riverbed to better quantify aquatic carbon fluxes and stocks in a small watershed of the Mid-Atlantic regionen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s13021-020-00148-1.pdf
Size:
3.51 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.57 KB
Format:
Item-specific license agreed upon to submission
Description: