Environmental Science & Technology Research Works

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 20 of 59
  • Item
    No long-term effect of black bear removal on elk calf recruitment in the southern Appalachians
    (Wiley, 2023-11-06) Yarkovich, Joseph; Braunstein, Jessica L.; Mullinax, Jennifer M.; Clark, Joseph D.
    In 2001 and 2002, 52 elk (Cervus canadensis; 21 males, 31 females), originally obtained from Elk Island National Park, Alberta, Canada, were transported and released into Cataloochee Valley in the northeastern portion of Great Smoky Mountains National Park (GRSM, Park), North Carolina, USA. The annual population growth rate (λ) was negative (0.996, 95% CI = 0.945–1.047) and predation by black bears (Ursus americanus) on elk calves was identified as an important determinant of population growth. From 2006 to 2008, 49 bears from the primary elk calving area (i.e., Cataloochee Valley) were trapped and translocated about 70 km to the southwestern portion of the Park just prior to elk calving. Per capita recruitment (i.e., the number of calves produced per adult female that survive to 1 year of age) increased from 0.306 prior to bear translocation (2001–2005) to 0.544 during years when bears were translocated (2006–2008) and λ increased to 1.118 (95% CI = 1.096–1.140). Our objective was to determine whether per capita calf recruitment rates after bear removal (2009–2019) at Cataloochee were similar to the higher rates estimated during bear removal (i.e., long-term response) or if they returned to rates before bear removal (i.e., short-term response), and how those rates compared with recruitment from portions of our study area where bears were not relocated. We documented 419 potential elk calving events and monitored 129 yearling and adult elk from 2001 to 2019. Known-fate models based on radio-telemetry and observational data supported calf recruitment returning to pre-2006 levels at Cataloochee (short-term response); recruitment of Cataloochee elk before and after bear relocation was lower (0.184) than during bear relocation (0.492). Recruitment rates of elk outside the removal area during the bear relocation period (0.478) were similar to before and after rates (0.420). In the Cataloochee Valley, cause-specific annual calf mortality rates due to predation by bears were 0.319 before, 0.120 during, and 0.306 after bear relocation. In contrast, the cause-specific annual mortality rate of calves in areas where bears were not relocated was 0.033 after the bear relocation period, with no bear predation on calves before or during bear relocation. The mean annual population growth rate for all monitored elk was 1.062 (95% CI = 0.979–1.140) after bear relocation based on the recruitment and survival data. Even though the effects of bear removal were temporary, the relocations were effective in achieving a short-term increase in elk recruitment, which was important for the reintroduction program given that the elk population was small and vulnerable to extirpation.
  • Item
    Waterfowl show spatiotemporal trends in influenza A H5 and H7 infections but limited taxonomic variation
    (Wiley, 2023-07-31) Kent, Cody M.; Bevins, Sarah N.; Mullinax, Jennifer M.; Sullivan, Jeffery D.; Prosser, Diann J.
    Influenza A viruses in wild birds pose threats to the poultry industry, wild birds, and human health under certain conditions. Of particular importance are wild waterfowl, which are the primary reservoir of low-pathogenicity influenza viruses that ultimately cause high-pathogenicity outbreaks in poultry farms. Despite much work on the drivers of influenza A virus prevalence, the underlying viral subtype dynamics are still mostly unexplored. Nevertheless, understanding these dynamics, particularly for the agriculturally significant H5 and H7 subtypes, is important for mitigating the risk of outbreaks in domestic poultry farms. Here, using an expansive surveillance database, we take a large-scale look at the spatial, temporal, and taxonomic drivers in the prevalence of these two subtypes among influenza A-positive wild waterfowl. We document spatiotemporal trends that are consistent with past work, particularly an uptick in H5 viruses in late autumn and H7 viruses in spring. Interestingly, despite large species differences in temporal trends in overall influenza A virus prevalence, we document only modest differences in the relative abundance of these two subtypes and little, if any, temporal differences among species. As such, it appears that differences in species' phenology, physiology, and behaviors that influence overall susceptibility to influenza A viruses play a much lesser role in relative susceptibility to different subtypes. Instead, species are likely to freely pass viruses among each other regardless of subtype. Importantly, despite the similarities among species documented here, individual species still may play important roles in moving viruses across large geographic areas or sustaining local outbreaks through their different migratory behaviors.
  • Item
    Mosquitoes Associated with Ditch-Plugged and Control Tidal Salt Marshes on the Delmarva Peninsula
    (MDPI, 2011-07-25) Leisnham, Paul T.; Sandoval-Mohapatra, Sarah
    A study was conducted during the summer of 2009 (from July to September) to characterize mosquito communities among different habitats in five historically ditched tidal salt marshes and three adjacent wooded areas in the E.A. Vaughn Wetland Management Area on the Maryland Delmarva Peninsula, USA. Study marshes are characteristic of Atlantic coastal salt marshes that had undergone grid ditching from the 1930s to 1950s. In the autumn of 2008 (October and November) ditches were plugged near their outlets in two (‘experimental’) marshes with the aim to restore their natural tidal hydrology. The three other marshes were not plugged. Marshes were sampled from July to September in 2009 by using standard dip count method. A total of 2,457 mosquito larvae representing six species were collected on 15.4% (86/557) of all sample occasions and 399 adults representing four mosquito species were collected from landing counts. Aedes sollicitans, Anopheles bradleyi and Culex salinarius were the most common species collected in larval habitats, and Ae. sollicitans was the most common adult collected. Wooded habitats had more total mosquitoes, were also more frequently occupied by mosquitoes and had higher densities of mosquitoes than marsh habitats. Almost all larvae collected from marshes were from one experimental and one control site. The majority of larvae at the control site were Ae. sollicitans in marsh pannes while Cx. salinarius, An. bradleyi, Ae. cantator, and Ae. sollicitans were collected in high numbers from ditches at the experimental site. We found a difference in the proportion of marsh pannes occupied by Ae. sollicitans but not total mosquitoes sampled 4–5 days after spring tide events than on other occasions. Salinity measures of 42 larval habitats showed lower median salinity in mosquito-occupied habitats (11.5 ppt) than unoccupied habitats (20.1 ppt), and in habitats in wooded areas followed by ditches and pannes in marsh areas. The results of this study suggest that wooded areas adjacent to salt marshes may be a substantial source of biting adult mosquitoes usually associated with salt marsh habitats and that ditch plugging may alter the productivity of mosquitoes on some marshes. We recommend future studies consider mosquito productivity from habitats surrounding salt marshes, and if assessments of marsh alterations are a goal, compare multiple experimental and control areas before and after treatments to determine if alterations have a consistent impact on regional mosquito production.
  • Item
    The White Mountain Recreational Enterprise: Bio-Political Foundations for White Mountain Apache Natural Resource Control, 1945–1960
    (MDPI, 2016-07-15) Tomblin, David C.
    Among American Indian nations, the White Mountain Apache Tribe has been at the forefront of a struggle to control natural resource management within reservation boundaries. In 1952, they developed the first comprehensive tribal natural resource management program, the White Mountain Recreational Enterprise (WMRE), which became a cornerstone for fighting legal battles over the tribe’s right to manage cultural and natural resources on the reservation for the benefit of the tribal community rather than outside interests. This article examines how White Mountain Apaches used the WMRE, while embracing both Euro-American and Apache traditions, as an institutional foundation for resistance and exchange with Euro-American society so as to reassert control over tribal eco-cultural resources in east-central Arizona.
  • Item
    Post-Deepwater Horizon Oil Spill Monitoring of Louisiana Salt Marshes Using Landsat Imagery
    (MDPI, 2017-06-01) Mo, Yu; Kearney, Michael S.; Riter, J. C. Alexis
    The Deepwater Horizon oil spill, the second largest marine oil spill in history, contaminated over a thousand kilometers of coastline in the Louisiana salt marshes and seriously threatened this valuable ecosystem. Measuring the impacts of the oil spill over the large and complex coast calls for the application of remote sensing techniques. This study develops a method for post-Deepwater Horizon oil spill monitoring of the damaged marsh vegetation using Landsat imagery. This study utilizes 10 years of Landsat data, from 2005 to 2014, to examine the longevity of the oil spill’s impacts on the marsh vegetation. AVIRIS data collected between 2010 and 2012 are used to validate the Landsat results. Landsat imagery documents the significant effect of oiling on the Normalized Difference Vegetation Index (NDVI) of the marsh vegetation in 2010 and 2011 (p < 0.01 in both cases). These results are corroborated by the AVIRIS data, which recorded the most severe impact in May 2011 followed by progressive recovery in October 2011 and October 2012. The Landsat imagery, combined with relevant environmental information and appropriate statistical tools, provides a robust and low-cost method for long-term post-oil spill monitoring of the marshes, revealing that the major aboveground impacts (at 30 m scale) of the Deepwater Horizon oil spill on Louisiana salt marshes lasted for two years. The method presented is applicable for other hazardous events whenever pre-event referencing and long-term post-event monitoring are desired, thereby offering an effective and economical tool for disaster management.
  • Item
    Bioethical Considerations of Advancing the Application of Marine Biotechnology and Aquaculture
    (MDPI, 2017-06-24) Harrell, Reginal M.
    Normative ethical considerations of growth of the marine biotechnology and aquaculture disciplines in biopharming, food production, and marine products commercialization from a bioethical perspective have been limited. This paucity of information begs the question of what constitutes a bioethical approach (i.e., respect for individuals or autonomy; beneficence, nonmaleficence, and justice) to marine biotechnology and aquaculture, and whether it is one that is appropriate for consideration. Currently, thoughtful discussion on the bioethical implications of use, development, and commercialization of marine organisms or their products, as well as potential environmental effects, defaults to human biomedicine as a model. One must question the validity of using human bioethical principlism moral norms for appropriating a responsible marine biotechnology and aquaculture ethic. When considering potential impacts within these disciplines, deference must be given to differing value systems in order to find common ground to advance knowledge and avoid emotive impasses that can hinder the science and its application. The import of bioethical considerations when conducting research and/or production is discussed. This discussion is directed toward applying bioethical principles toward technology used for food, biomedical development (e.g., biopharming), or as model species for advancement of knowledge for human diseases.
  • Item
    Utilization of the Maryland Environmental Justice Screening Tool: A Bladensburg, Maryland Case Study
    (MDPI, 2019-01-26) Driver, Aubree; Mehdizadeh, Crystal; Bara-Garcia, Samuel; Bodenreider, Coline; Lewis, Jessica; Wilson, Sacoby
    Maryland residents’ knowledge of environmental hazards and their health effects is limited, partly due to the absence of tools to map and visualize distribution of risk factors across sociodemographic groups. This study discusses the development of the Maryland EJSCREEN (MD EJSCREEN) tool by the National Center for Smart Growth in partnership with faculty at the University of Maryland School of Public Health. The tool assesses environmental justice risks similarly to the U.S. Environmental Protection Agency’s (USEPA) EJSCREEN tool and California’s tool, CalEnviroScreen 3.0. We discuss the architecture and functionality of the tool, indicators of importance, and how it compares to USEPA’s EJSCREEN and CalEnviroScreen. We demonstrate the use of MD EJSCREEN through a case study on Bladensburg, Maryland, a town in Prince George’s County (PG) with several environmental justice concerns including air pollution from traffic and a concrete plant. Comparison reveals that environmental and demographic indicators in MD EJSCREEN most closely resemble those in EPA EJSCREEN, while the scoring is most similar to CalEnviroScreen. Case study results show that Bladensburg has a Prince George’s environmental justice score of 0.99, and that National Air Toxics Assessment (NATA) air toxics cancer risk is concentrated in communities of color.
  • Item
    Urbanization Altered Bacterial and Archaeal Composition in Tidal Freshwater Wetlands Near Washington DC, USA, and Buenos Aires, Argentina
    (MDPI, 2019-03-06) Gonzalez Mateu, Martina; Park, Cedric Evan; McAskill, Cullen Patrick; Baldwin, Andrew H.; Yarwood, Stephanie A.
    Urban expansion causes coastal wetland loss, and environmental stressors associated with development can lead to wetland degradation and loss of ecosystem services. This study investigated the effect of urbanization on prokaryotic community composition in tidal freshwater wetlands. Sites in an urban, suburban, and rural setting were located near Buenos Aires, Argentina, and Washington D.C., USA. We sampled soil associated with two pairs of functionally similar plant species, and used Illumina sequencing of the 16S rRNA gene to examine changes in prokaryotic communities. Urban stressors included raw sewage inputs, nutrient pollution, and polycyclic aromatic hydrocarbons. Prokaryotic communities changed along the gradient (nested PerMANOVA, Buenos Aires: p = 0.005; Washington D.C.: p = 0.001), but did not differ between plant species within sites. Indicator taxa included Methanobacteria in rural sites, and nitrifying bacteria in urban sites, and we observed a decrease in methanogens and an increase in ammonia-oxidizers from rural to urban sites. Functional profiles in the Buenos Aires communities showed higher abundance of pathways related to nitrification and xenobiotic degradation in the urban site. These results suggest that changes in prokaryotic taxa across the gradient were due to surrounding stressors, and communities in urban and rural wetlands are likely carrying out different functions.
  • Item
    Effects of Detritus on the Mosquito Culex pipiens: Phragmites and Schedonorus (Festuca) Invasion Affect Population Performance
    (MDPI, 2019-10-25) Leisnham, Paul T.; Scott, Brandon; Baldwin, Andrew H.; LaDeau, Shannon L.
    Species interactions that influence the performance of the exotic mosquito Culex pipiens can have important effects on the transmission risk of West Nile virus (WNV). Invasive plants that alter the vegetation communities of ephemeral ground pools may facilitate or resist the spread of C. pipiens (L.) by altering allochthonous inputs of detritus in those pools. To test this hypothesis, we combined field surveys of roadside stormwater ditches with a laboratory microcosm experiment to examine relationships between C. pipiens performance and water quality in systems containing detritus from invasive Phragmites australis (Cav.) Trin. Ex Steud., introduced Schedonorus arundinaceus (Schreb.) Dumort., or native Juncus effusus L. or Typha latifolia L. In ditches, C. pipiens abundance was unrelated to detritus species but female C. pipiens were significantly larger from ditches with S. arundinaceus and smaller with J. effusus. Larger and smaller C. pipiens were also produced in microcosms provisioned with S. arundinaceus and J. effusus, respectively, yet the per capita rate of population of change did not vary. Larger females from habitats with S. arundinaceus were likely caused by faster decay rates of S. arundinaceus and resultant increases in microbial food, but lower survival as a result of fouling and higher tannin-lignin concentrations resulted in little changes to overall population performance. Larger female mosquitoes have been shown to have greater potential for transmitting arboviruses. Our findings suggest that changed community-level interactions from plant invasions in urban ephemeral ground pools can affect the fitness of C. pipiens and possibly increase WNV risk.
  • Item
    Methane and Hydrogen Sulfide Production from Co-Digestion of Gummy Waste with a Food Waste, Grease Waste, and Dairy Manure Mixture
    (MDPI, 2019-11-23) Lansing, Stephanie; Choudhury, Abhinav
    Co-digestion of dairy manure with waste organic substrates has been shown to increase the methane (CH4) yield of farm-scale anaerobic digestion (AD). A gummy vitamin waste (GVW) product was evaluated as an AD co-digestion substrate using batch AD testing. The GVW product was added at four inclusion levels (0%, 5%, 9%, and 23% on a wet mass basis) to a co-digestion substrate mixture of dairy manure (DM), food-waste (FW), and grease-waste (GW) and compared to mono-digestion of the GVW, DM, FW, and GW substrates. All GVW co-digestion treatments significantly increased CH4 yield by 126–151% (336–374 mL CH4/g volatile solids (VS)) compared to DM-only treatment (149 mL CH4/g VS). The GVW co-digestion treatments also significantly decreased the hydrogen sulfide (H2S) content in the biogas by 66–83% (35.1–71.9 mL H2S/kg VS) compared to DM-only (212 mL H2S/kg VS) due to the low sulfur (S) content in GVW waste. The study showed that GVW is a potentially valuable co-digestion substrate for dairy manure. The high density of VS and low moisture and S content of GVW resulted in higher CH4 yields and lower H2S concentrations, which could be economically beneficial for dairy farmers.
  • Item
    Evaluation of Hydrogen Sulfide Scrubbing Systems for Anaerobic Digesters on Two U.S. Dairy Farms
    (MDPI, 2019-12-04) Choudhury, Abhinav; Shelford, Timothy; Felton, Gary; Gooch, Curt; Lansing, Stephanie
    Hydrogen sulfide (H2S) is a corrosive trace gas present in biogas produced from anaerobic digestion systems that should be removed to reduce engine-generator set maintenance costs. This study was conducted to provide a more complete understanding of two H2S scrubbers in terms of efficiency, operational and maintenance parameters, capital and operational costs, and the effect of scrubber management on sustained H2S reduction potential. For this work, biogas H2S, CO2, O2, and CH4 concentrations were quantified for two existing H2S scrubbing systems (iron-oxide scrubber, and biological oxidation using air injection) located on two rural dairy farms. In the micro-aerated digester, the variability in biogas H2S concentration (average: 1938 ± 65 ppm) correlated with the O2 concentration (average: 0.030 ± 0.004%). For the iron-oxide scrubber, there was no significant difference in the H2S concentrations in the pre-scrubbed (450 ± 42 ppm) and post-scrubbed (430 ± 41 ppm) biogas due to the use of scrap iron and steel wool instead of proprietary iron oxide-based adsorbents often used for biogas desulfurization. Even though the capital and operating costs for the two scrubbing systems were low (<$1500/year), the lack of dedicated operators led to inefficient performance for the two scrubbing systems.
  • Item
    Enhanced Biogas Production of Cassava Wastewater Using Zeolite and Biochar Additives and Manure Co-Digestion
    (MDPI, 2020-01-19) Achi, Chibueze G.; Hassanein, Amro; Lansing, Stephanie
    Currently, there are challenges with proper disposal of cassava processing wastewater, and a need for sustainable energy in the cassava industry. This study investigated the impact of co-digestion of cassava wastewater (CW) with livestock manure (poultry litter (PL) and dairy manure (DM)), and porous adsorbents (biochar (B-Char) and zeolite (ZEO)) on energy production and treatment efficiency. Batch anaerobic digestion experiments were conducted, with 16 treatments of CW combined with manure and/or porous adsorbents using triplicate reactors for 48 days. The results showed that CW combined with ZEO (3 g/g total solids (TS)) produced the highest cumulative CH4 (653 mL CH4/g VS), while CW:PL (1:1) produced the most CH4 on a mass basis (17.9 mL CH4/g substrate). The largest reduction in lag phase was observed in the mixture containing CW (1:1), PL (1:1), and B-Char (3 g/g TS), yielding 400 mL CH4/g volatile solids (VS) after 15 days of digestion, which was 84.8% of the total cumulative CH4 from the 48-day trial. Co-digesting CW with ZEO, B-Char, or PL provided the necessary buffer needed for digestion of CW, which improved the process stability and resulted in a significant reduction in chemical oxygen demand (COD). Co-digestion could provide a sustainable strategy for treating and valorizing CW. Scale-up calculations showed that a CW input of 1000–2000 L/d co-digested with PL (1:1) could produce 9403 m3 CH4/yr using a 50 m3 digester, equivalent to 373,327 MJ/yr or 24.9 tons of firewood/year. This system would have a profit of $5642/yr and a $47,805 net present value.
  • Item
    Concentrations and Loads of Dissolved and Particulate Organic Carbon in Urban Stormwater Runoff
    (MDPI, 2020-04-04) Kalev, Stefan; Toor, Gurpal S.
    Urban landscapes are significant contributors of organic carbon (OC) in receiving waters, where elevated levels of OC limit the light availability, increase the transport of pollutants, and result in high costs of potable water treatment. Our objective in this study was to investigate the concentrations, fractions (dissolved and particulate), and loads of OC in a residential catchment (3.89 ha drainage area) located in Florida, United States. The outlet of the stormwater pipe draining the residential catchment was instrumented with an automated sampler, a flowmeter, and a rain gauge. The rainfall and runoff samples collected over 25 storm events during the 2016 wet season (June to September) were analyzed for dissolved organic carbon (DOC) and total organic carbon (TOC), with particulate OC (POC) calculated as the difference between TOC and DOC. Mean concentration of DOC was 2.3 ± 1.7 mg L−1 and POC was 0.3 ± 0.3 mg L−1 in the rainfall, whereas DOC was 10.5 ± 6.20 mg L−1 and POC was 2.00 ± 4.05 mg L−1 in the stormwater runoff. Concentrations of DOC were higher during the rising limb of the hydrograph in 15 out of 25 storm events, suggesting flushing of DOC, with an increase in the amount of runoff, from the landscape sources in the residential catchment. The estimated total export of OC during the 2016 wet season was 66.0 kg ha−1, of which DOC was 56.9 kg ha−1 (86.2% of TOC), and POC was 9.1 kg ha−1 (13.8% of TOC). High concentrations and loads of OC, especially DOC, in the stormwater runoff imply that residential catchments in urban watersheds are hot-spots of DOC influx to water bodies. Reducing DOC transport in the urban landscapes is complex and require identifying the origin of DOC and then using site-specific targeted approaches to mitigate DOC loss.
  • Item
    Worldwide Regulations and Guidelines for Agricultural Water Reuse: A Critical Review
    (MDPI, 2020-03-29) Shoushtarian, Farshid; Negahban-Azar, Masoud
    Water reuse is gaining momentum as a beneficial practice to address the water crisis, especially in the agricultural sector as the largest water consumer worldwide. With recent advancements in wastewater treatment technologies, it is possible to produce almost any water quality. However, the main human and environmental concerns are still to determine what constituents must be removed and to what extent. The main objectives of this study were to compile, evaluate, and compare the current agricultural water reuse regulations and guidelines worldwide, and identify the gaps. In total, 70 regulations and guidelines, including Environmental Protection Agency (EPA), International Organization for Standardization (ISO), Food and Agriculture Organization of the United Nations (FAO), World Health Organization (WHO), the United States (state by state), European Commission, Canada (all provinces), Australia, Mexico, Iran, Egypt, Tunisia, Jordan, Palestine, Oman, China, Kuwait, Israel, Saudi Arabia, France, Cyprus, Spain, Greece, Portugal, and Italy were investigated in this study. These regulations and guidelines were examined to compile a comprehensive database, including all of the water quality monitoring parameters, and necessary treatment processes. In summary, results showed that the regulations and guidelines are mainly human-health centered, insufficient regarding some of the potentially dangerous pollutants such as emerging constituents, and with large discrepancies when compared with each other. In addition, some of the important water quality parameters such as some of the pathogens, heavy metals, and salinity are only included in a small group of regulations and guidelines investigated in this study. Finally, specific treatment processes have been only mentioned in some of the regulations and guidelines, and with high levels of discrepancy.
  • Item
    Rethinking Stormwater: Analysis Using the Hydrosocial Cycle
    (MDPI, 2020-04-30) Wilfong, Matthew; Pavao-Zuckerman, Mitchell
    Water management and governance continues to rely on the scientific and engineering principles of the hydrologic cycle for decision-making on policies and infrastructure choices. This over-reliance on hydrologic-based, technocratic, command-and-control management and governance tends to discount and overlook the political, social, cultural, and economic factors that shape water-society relationships. This paper utilizes an alternative framework, the hydrosocial cycle, to analyze how water and society shape each other over time. In this paper, the hydrosocial framework is applied to stormwater management in the United States. Two hydrosocial case studies centered on rain and stormwater are investigated to highlight how stormwater management can benefit from a hydrosocial approach. The insights and implications from these case studies are then applied to stormwater management by formulating key questions that arise under the hydrosocial framework. These key questions are significant to progressing stormwater management to more sustainable, resilient, and equitable outcomes for environmental and public safety and health. This paper frames a conversation for incorporating the hydrosocial framework into stormwater management and demonstrates the need for an interdisciplinary approach to water management and governance issues.
  • Item
    Assessing Soil Organic Carbon in Soils to Enhance and Track Future Carbon Stocks
    (MDPI, 2020-08-05) Yang, Yun-Ya; Goldsmith, Avi; Herold, Ilana; Lecha, Sebastian; Toor, Gurpal S.
    Soils represent the largest terrestrial sink of carbon (C) on Earth, yet the quantification of the amount of soil organic carbon (SOC) is challenging due to the spatial variability inherent in agricultural soils. Our objective was to use a grid sampling approach to assess the magnitude of SOC variability and determine the current SOC stocks in three typical agricultural fields in Maryland, United States. A selected area in each field (4000 m2) was divided into eight grids (20 m × 25 m) for soil sample collection at three fixed depth intervals (0–20 cm, 20–40 cm, and 40–60 cm). Soil pH in all fields was significantly (p < 0.05) greater in the surface soil layer (6.2–6.4) than lower soil layers (4.7–5.9). The mean SOC stocks in the surface layers (0–20 cm: 1.7–2.5 kg/m2) were 47% to 53% of the total SOC stocks at 0–60 cm depth, and were significantly greater than sub-surface layers (20–40 cm: 0.9–1.3 kg/m2; 40–60 cm: 0.8–0.9 kg/m2). Carbon to nitrogen (C/N) ratio and stable C isotopic composition (δ13C) were used to understand the characteristics of SOC in three fields. The C/N ratio was positively corelated (r > 0.96) with SOC stocks, which were lower in sub-surface than surface layers. Differences in C/N ratios and δ13C signatures were observed among the three fields. The calculated values of SOC stocks at 0–60 cm depth ranged from 37 to 47 Mg/ha and were not significantly different in three fields likely due to the similar parent material, soil types, climate, and a short history of changes in management practices. A small variability (~10% coefficient of variation) in SOC stocks across eight sampling grids in each field suggests that re-sampling these grids in the future can lead to accurately determining and tracking changes in SOC stocks.
  • Item
    Bio-Electrochemical Enhancement of Hydrogen and Methane Production in a Combined Anaerobic Digester (AD) and Microbial Electrolysis Cell (MEC) from Dairy Manure
    (MDPI, 2020-10-14) Hassanein, Amro; Witarsa, Freddy; Lansing, Stephanie; Qiu, Ling; Liang, Yong
    Anaerobic digestion (AD) is a biological-based technology that generates methane-enriched biogas. A microbial electrolysis cell (MEC) uses electricity to initiate bacterial oxidization of organic matter to produce hydrogen. This study determined the effect of energy production and waste treatment when using dairy manure in a combined AD and MEC (AD-MEC) system compared to AD without MEC (AD-only). In the AD-MEC system, a single chamber MEC (150 mL) was placed inside a 10 L digester on day 20 of the digestion process and run for 272 h (11 days) to determine residual treatment and energy capacity with an MEC included. Cumulative H2 and CH4 production in the AD-MEC (2.43 L H2 and 23.6 L CH4) was higher than AD-only (0.00 L H2 and 10.9 L CH4). Hydrogen concentration during the first 24 h of MEC introduction constituted 20% of the produced biogas, after which time the H2 decreased as the CH4 concentration increased from 50% to 63%. The efficiency of electrical energy recovery (ηE) in the MEC was 73% (ηE min.) to 324% (ηE max.), with an average increase of 170% in total energy compared to AD-only. Chemical oxygen demand (COD) removal was higher in the AD-MEC (7.09 kJ/g COD removed) system compared to AD-only (6.19 kJ/g COD removed). This study showed that adding an MEC during the digestion process could increase overall energy production and organic removal from dairy manure.
  • Item
    Modeling the Impacts of Climate Change on Crop Yield and Irrigation in the Monocacy River Watershed, USA
    (MDPI, 2020-11-25) Paul, Manashi; Dangol, Sijal; Kholodovsky, Vitaly; Sapkota, Amy R.; Negahban-Azar, Masoud; Lansing, Stephanie
    Crop yield depends on multiple factors, including climate conditions, soil characteristics, and available water. The objective of this study was to evaluate the impact of projected temperature and precipitation changes on crop yields in the Monocacy River Watershed in the Mid-Atlantic United States based on climate change scenarios. The Soil and Water Assessment Tool (SWAT) was applied to simulate watershed hydrology and crop yield. To evaluate the effect of future climate projections, four global climate models (GCMs) and three representative concentration pathways (RCP 4.5, 6, and 8.5) were used in the SWAT model. According to all GCMs and RCPs, a warmer climate with a wetter Autumn and Spring and a drier late Summer season is anticipated by mid and late century in this region. To evaluate future management strategies, water budget and crop yields were assessed for two scenarios: current rainfed and adaptive irrigated conditions. Irrigation would improve corn yields during mid-century across all scenarios. However, prolonged irrigation would have a negative impact due to nutrients runoff on both corn and soybean yields compared to rainfed condition. Decision tree analysis indicated that corn and soybean yields are most influenced by soil moisture, temperature, and precipitation as well as the water management practice used (i.e., rainfed or irrigated). The computed values from the SWAT modeling can be used as guidelines for water resource managers in this watershed to plan for projected water shortages and manage crop yields based on projected climate change conditions.
  • Item
    Developing a Multicriteria Decision Analysis Framework to Evaluate Reclaimed Wastewater Use for Agricultural Irrigation: The Case Study of Maryland
    (MDPI, 2021-01-06) Paul, Manashi; Negahban-Azar, Masoud; Shirmohammadi, Adel; Montas, Hubert
    Groundwater is the main source of irrigation and residential use in the Eastern Shore Maryland, which is experiencing challenges regarding overuse, saltwater intrusion, and diminishing productivity. The Chesapeake Bay is also facing the problem of water pollution due to pollutant loading from agricultural fields and wastewater treatment plants (WWTPs). Using recycled water for irrigation has the potential to alleviate the pressure on groundwater and reduce pollutant loading. The objective of this study was to develop a decision tool to explore the use of recycled water for agricultural irrigation in Maryland using Multicriteria Decision Analysis (MCDA) integrated with Geographical Information Systems (GIS). Four main evaluation criteria were included in the GIS-MCDA framework: agricultural land cover, climate, groundwater vulnerability, and characteristics of the WWTPs as sources of recycled water. Groundwater vulnerability zones were developed using the groundwater well density, water extraction data, and the aquifer information. Then, the most suitable areas for irrigation using recycled water were identified. About 13.5% and 32.9% of agricultural land was, respectively, found to be “highly” and “moderately” suitable for irrigation with recycled water when WWTPs were categorized based on their treatment process information. The results provide a useful decision tool to promote the use of recycled water for agricultural irrigation.
  • Item
    Evidence of Phosphate Mining and Agriculture Influence on Concentrations, Forms, and Ratios of Nitrogen and Phosphorus in a Florida River
    (MDPI, 2021-04-13) Duan, Shuiwang; Banger, Kamaljit; Toor, Gurpal S.
    Florida has a long history of phosphate-mining, but less is known about how mining affects nutrient exports to coastal waters. Here, we investigated the transport of inorganic and organic forms of nitrogen (N) and phosphorus (P) over 23 sampling events during a wet season (June–September) in primary tributaries and mainstem of Alafia River that drains into the Tampa Bay Estuary. Results showed that a tributary draining the largest phosphate-mining area (South Prong) had less flashy peaks, and nutrients were more evenly exported relative to an adjacent tributary (North Prong), highlighting the effectiveness of the mining reclamation on stream hydrology. Tributaries draining > 10% phosphate-mining area had significantly higher specific conductance (SC), pH, dissolved reactive P (DRP), and total P (TP) than tributaries without phosphate-mining. Further, mean SC, pH, and particulate reactive P were positively correlated with the percent phosphate-mining area. As phosphate-mining occurred in the upper part of the watershed, the SC, pH, DRP, and TP concentrations increased downstream along the mainstem. For example, the upper watershed contributed 91% of TP compared to 59% water discharge to the Alafia River. In contrast to P, the highest concentrations of total N (TN), especially nitrate + nitrite (NOx–N) occurred in agricultural tributaries, where the mean NOx–N was positively correlated with the percent agricultural land. Dissolved organic N was dominant in all streamwaters and showed minor variability across sites. As a result of N depletion and P enrichment, the phosphate-mining tributaries had significantly lower molar ratios of TN:TP and NOx–N:DRP than other tributaries. Bi-weekly monitoring data showed consistent increases in SC and DRP and a decrease in NOx–N at the South Prong tributary (highest phosphate-mining area) throughout the wet season, and different responses of dissolved inorganic nutrients (negative) and particulate nutrients (positive) to water discharge. We conclude that (1) watersheds with active and reclaimed phosphate-mining and agriculture lands are important sources of streamwater P and N, respectively, and (2) elevated P inputs from the phosphate-mining areas altered the N:P ratios in streamwaters of the Alafia River.