Estimating snow mass in North America through assimilation of AMSR-E brightness temperature observations using the Catchment land surface model and support vector machines

No Thumbnail Available
Xue, Yuan
Forman, Barton
Reichle, Rolf
Forman, Barton
Related Publication Citation
To estimate snow mass across North America, multi-frequency brightness temperature (Tb) observations collected by the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) from 2002 to 2011 were assimilated into the Catchment land surface model using a support vector machine (SVM) as the observation operator as part of a one-dimensional ensemble Kalman filter. The performance of the assimilation system is evaluated through comparisons against ground-based measurements and publicly-available reference SWE and snow depth products. Assimilation estimates agree better with ground-based snow depth measurements than model-only (“open loop”, or OL) estimates in approximately 82% (56 out of 62) of pixels that are colocated with at least two ground-based stations. In addition, assimilation estimates tend to agree better with all snow products over tundra snow, alpine snow, maritime snow, as well as sparsely-vegetated snow-covered pixels. Improvements in snow mass via assimilation translate into improvements in cumulative runoff estimates when compared against discharge measurements in 11 out of 13 major snow-dominated basins in Alaska. These results prove that a SVM can serve as an efficient and effective observation operator for snow mass estimation within a radiance assimilation system.