Strategies Based on Nitride Materials Chemistry to Stabilize Li Metal Anode

dc.contributor.authorZhu, Yizhou
dc.contributor.authorHe, Xingfeng
dc.contributor.authorMo, Yifei
dc.date.accessioned2017-08-31T19:55:46Z
dc.date.available2017-08-31T19:55:46Z
dc.date.issued2017-03-03
dc.descriptionPartial funding for Open Access provided by the UMD Libraries' Open Access Publishing Fund.en_US
dc.description.abstractLithium metal battery is a promising candidate for high-energy-density energy storage. Unfortunately, the strongly reducing nature of lithium metal has been an outstanding challenge causing poor stability and low coulombic efficiency in lithium batteries. For decades, there are significant research efforts to stabilize lithium metal anode. However, such efforts are greatly impeded by the lack of knowledge about lithium-stable materials chemistry. So far, only a few materials are known to be stable against Li metal. To resolve this outstanding challenge, lithium-stable materials have been uncovered out of chemistry across the periodic table using first-principles calculations based on large materials database. It is found that most oxides, sulfides, and halides, commonly studied as protection materials, are reduced by lithium metal due to the reduction of metal cations. It is discovered that nitride anion chemistry exhibits unique stability against Li metal, which is either thermodynamically intrinsic or a result of stable passivation. The results here establish essential guidelines for selecting, designing, and discovering materials for lithium metal protection, and propose multiple novel strategies of using nitride materials and high nitrogen doping to form stable solid-electrolyte-interphase for lithium metal anode, paving the way for high-energy rechargeable lithium batteries.en_US
dc.identifierhttps://doi.org/10.13016/M2P26Q396
dc.identifier.citationAdvanced Science, 2017, 4, 1600517, DOI: 10.1002/advs.201600517en_US
dc.identifier.urihttp://hdl.handle.net/1903/19716
dc.language.isoen_USen_US
dc.publisherJohn Wiley & Sons Ltd.en_US
dc.relation.isAvailableAtA. James Clark School of Engineeringen_us
dc.relation.isAvailableAtMaterials Science & Engineeringen_us
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_us
dc.relation.isAvailableAtUniversity of Maryland (College Park, MD)en_us
dc.titleStrategies Based on Nitride Materials Chemistry to Stabilize Li Metal Anodeen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Zhu_et_al-2017-Advanced_Science.pdf
Size:
742.61 KB
Format:
Adobe Portable Document Format
Description: