Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Electrical & Computer Engineering
    • Electrical & Computer Engineering Research Works
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Electrical & Computer Engineering
    • Electrical & Computer Engineering Research Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    What is the Limit of Energy Saving by Dynamic Voltage Scaling?

    Thumbnail
    View/Open
    c023.pdf (104.4Kb)
    No. of downloads: 3055

    Date
    2001-11
    Author
    Qu, Gang
    Citation
    G. Qu. " What is the Limit of Energy Saving by Dynamic Voltage Scaling?" IEEE/ACM International Conference on Computer Aided Design, pp. 560-563, November 2001.
    Metadata
    Show full item record
    Abstract
    Dynamic voltage scaling (DVS) is a technique that varies the supply voltage and clock frequency based on the computation load to provide desired performance with the minimal amount of energy consumption. It has been demonstrated as one of the most effective low power system design techniques, in particular for real time systems. Previously, there are works on both ends of the DVS systems: the ideal variable voltage system which can change its voltage with no physical constraints, and the multiple voltage system which has a number of discrete voltages available simultaneously. In this paper, we study the DVS systems between these two extreme cases. We consider systems that can vary the operating voltage dynamically under various real-life physical constraints. Based on the system’s different behavior during voltage transition, we define the feasible DVS system and the practical DVS system. We build mathematical model to analyze the potential of DVS on energy saving for these different systems. Finally, we simulate the behavior of a secure wireless communication networks with DVS systems. The results show that DVS results in energy reduction from 36% to 79%, and the real life DVS systems can be very close to the ideal system in energy saving.
    URI
    http://hdl.handle.net/1903/9045
    Collections
    • Electrical & Computer Engineering Research Works
    Rights
    Copyright © 2001 IEEE. Reprinted from IEEE International Conference on Application-Specific Systems. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Maryland's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility