Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Empirical Analyses on Federal Thrift Savings Plan Portfolio Optimization

    Thumbnail
    View/Open
    umi-umd-5031.pdf (1.144Mb)
    No. of downloads: 6971

    Date
    2007-11-27
    Author
    Nestler, Scott T
    Advisor
    Fu, Michael C
    Madan, Dilip B
    Metadata
    Show full item record
    Abstract
    There is ample historical data to suggest that log returns of stocks and indices are not independent and identically distributed Normally, as is commonly assumed. Instead, the returns of financial assets are skewed and have higher kurtosis. To account for skewness and excess kurtosis, it is necessary to have a distribution that is more flexible than the Gaussian distribution and uses additional information that may be present in higher moments. The federal government's Thrift Savings Plan (TSP) is the largest defined contribution retirement savings and investment plan, with nearly 3.6 million participants and over $173 billion in assets. The TSP offers five assets (government bond fund, fixed income fund, large-cap stock fund, small-cap stock fund, and international stock fund) to U.S. government civilian employees and uniformed service members. The limited choice of investments, in comparison to most 401(k) plans, may be disappointing from a participant's perspective; however, it provides an attractive framework for empirical study. In this study, we investigate how the optimal choice of TSP assets changes when traditional portfolio optimization methods are replaced with newer techniques. Specifically, the following research questions are posed and answered: (1) Does use of a non-Gaussian factor model for returns, generated with independent components analysis (ICA) and following the Variance Gamma (VG) process, provide any advantage in constructing optimal TSP portfolios? (2) Can excess TSP portfolio returns be generated through rebalancing to an optimal mix? If so, what frequency of rebalancing provides benefits that offset increased computationalal and administrative burden? (3) How does the use of coherent risk and portfolio performance measures, in place of variance as the traditional the measure for risk and Sharpe Ratio as the usual portfolio performance measure affect TSP portfolio selection? We show through simulation that some of the newer schemes should produce excess returns over conventional (mean-variance optimization with Normally-distributed returns) portfolio choice models. The use of some or all of these methods could benefit the nearly 4 million TSP participants in achieving their retirement savings and investment objectives. Furthermore, we propose two new portfolio performance measures based on recent developments in coherent measures of risk.
    URI
    http://hdl.handle.net/1903/7749
    Collections
    • Decision, Operations & Information Technologies Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility