Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Electrical & Computer Engineering
    • Electrical & Computer Engineering Research Works
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Electrical & Computer Engineering
    • Electrical & Computer Engineering Research Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Instruction-Level Power Dissipation in the Intel XScale Embedded Microprocessor

    Thumbnail
    View/Open
    Instruction-level_rights.pdf (244.2Kb)
    No. of downloads: 1024

    Date
    2005-01
    Author
    Varma, Ankush
    Debes, Eric
    Kozintsev, Igor
    Jacob, Bruce
    Citation
    "Instruction-level power dissipation in the Intel XScale embedded microprocessor." A. Varma, E. Debes, I. Kozintsev, and B. Jacob. Proc. SPIE's 17th Annual Symposium on Electronic Imaging Science & Technology, San Jose CA, January 2005.
    Metadata
    Show full item record
    Abstract
    We present an instruction-level power dissipation model of the Intel XScale R° microprocessor. The XScale implements the ARMTMISA, but uses an aggressive microarchitecture and a SIMD Wireless MMXTMco-processor to speed up execution of multimedia workloads in the embedded domain. Instruction-Level power modelling was ¯rst proposed by Tiwari et. al. in 1994. Adaptations of this model have been found to be applicable to simple ARM processors. Research also shows that instructions can be clustered into groups with similar energy characteristics. We adapt these methodologies to the significantly more complex XScale processor. We characterize the processor in terms of the energy costs of opcode execution, operand values, pipeline stalls etc. through accurate measurements on hardware. This instruction-based (rather than microarchitectural) approach allows us to build a high-speed power-accurate simulator that runs at MIPS-range speeds, while achieving accuracy better than 5%. The processor core accounts only for a portion of overall power consumption, and we move beyond the core to explore the issues involved in building a SystemC simulation framework that models power dissipation of complete systems quickly, flexibly and accurately.
    URI
    http://hdl.handle.net/1903/7460
    Collections
    • Electrical & Computer Engineering Research Works

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility