Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Electrical & Computer Engineering
    • Electrical & Computer Engineering Research Works
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Electrical & Computer Engineering
    • Electrical & Computer Engineering Research Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Using Virtual Load/Store Queues (VLSQs) to Reduce the Negative Effects of Reordered Memory Instructions

    Thumbnail
    View/Open
    Using Virtual_rights.pdf (254.0Kb)
    No. of downloads: 541

    Date
    2005-02
    Author
    Jaleel, Aamer
    Jacob, Bruce
    Citation
    "Using Virtual Load/Store Queues (VLSQs) to reduce the negative effects of reordered memory instructions." Aamer Jaleel and Bruce Jacob. Proc. 11th International Symposium on High Performance Computer Architecture (HPCA 2005), pp. 191-200. San Francisco CA, February 2005.
    Metadata
    Show full item record
    Abstract
    The use of large instruction windows coupled with aggressive out-of order and prefetching capabilities has provided significant improvements in processor performance. In this paper, we quantify the effects of increased out-of-order aggressiveness on a processor’s memory ordering/consistency model as well as an application’s cache behavior. We observe that increasing reorder buffer sizes cause less than one third of issued memory instructions to be executed in actual program order. We show that increasing the reorder buffer size from 80 to 512 entries results in an increase in the frequency of memory traps by a factor of six and an increase in total execution overhead by 10–40%. Additionally, we observe that the reordering of memory instructions increases the L1 data cache accesses by 10–60% and the L1 data cache misses by 10–20%. These findings reveal that increased out-of-order capability can waste energy in two ways. First, re-fetching and re-executing instructions flushed due to traps require the fetch, map, and execution units to dissipate energy on work that has already been done before. Second, an increase in the number of cache accesses and cache misses needlessly dissipates energy. Both these side effects can be related to the reordering of memory instructions. Thus, to avoid wasting both energy and performance, we propose a virtual load/ store queue (VLSQ) within the existing physical load/store queue. The VLSQ reduces the reordering of memory instructions by limiting the number of memory instructions visible to the select and issue logic. We show that VLSQs can reduce trap overhead, cache accesses, and cache misses by as much as 45%, 50%, and 15% respectively when compared to traditional load/store queues. We observe that these reductions yield net power savings of 10–50% with degradation in performance by 1–5%.
    URI
    http://hdl.handle.net/1903/7457
    Collections
    • Electrical & Computer Engineering Research Works

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility