Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Distributed Estimation of a Location Parameter in Dependent Noise.

    Thumbnail
    View/Open
    TR_89-78.pdf (523.0Kb)
    No. of downloads: 271

    Date
    1989
    Author
    Chau, Yawgeng A.
    Geraniotis, Evaggelos A.
    Metadata
    Show full item record
    Abstract
    We address the problem of distributed estimation from dependent observations involving two sensors that collect observations of the same nonrandom location parameter THETA in additive noise. We consider two cases of interest, the case of independent observations across sensors and the case of correlated observations across sensors. The estimation schemes of the sensors are chosen so as to minimize a common cost function consisting of the weighted sum of the mean square errors of the estimates from the two sensors and the mean square of their difference. The observations of the two sensors are modeled as two MU - dependent or PHI mixing sequences. The correlation between the two observation sequences is also characterized by an p-dependent or PHI mixing sequence. Because high-order statistics of dependent observations are generally difficult to characterize, maximum-likehood estimates may be impossible to derive or implement; instead, suboptimal estimates which use memoryless nonlinearities g_k (DOT) (i.e. nonlinear functions of observations,) for k = 1,2, are employed by the two sensors. With this structure in each sensor, minimizing the above cost function with respect to the estimates is equivalent to minimizing it with respect to the nonlinearities g_k (DOT), which results in linear integral equations. If we solve these integral equations, we obtain optimal nonlinearities within this suboptimal scheme. Examples for m - dependent Cauchy noise are provided in support of our analysis.
    URI
    http://hdl.handle.net/1903/4917
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility