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ABSTRACT

We address the problem of distributed estimation from dependent observations involving
two sensors (k=1,2) that collect observations X‘-("’ (i=1,2,...,N) of the same nonrandom loca-
tion parameter 0 in additive noise. We consider two cases of interest, the case of independent
observations across sensors and the case of correlated observations across sensors. The estima-
tion schemes of the sensors are chosen so as to minimize a common cost function consisting of
the weighted sum of the mean square errors of the estimates 0 (k=1,2) of the two sensors
and the mean square of their difference.

The observations of the two sensors are modeled as two m-dependent or ¢-mixing
sequences. The correlation between the two observation sequences is also characterized by an
m-dependent or ¢-mixing sequence. Because high-order statistics of dependent observations are
generally difficult to characterize, maximum-likelihood estimates may be impossible to derive
or implement; instead, suboptimal estimates, which solve mingu; X, -8 or, equivalently,

N
¥ 2 X -8 = 0 on the basis of the memoryless nonlinearities g, ( - ), are employed by the
i=1

sensors. With sensor test statistics, minimizing the above cost function with respect to 8% is
equivalent to minimizing it with respect to the nonlinearities g;( - ), thus resulting in integral
equations. By solving these integral equations, we obtain optimal nonlinearities within this
suboptimal framework. Examples for m-dependent Cauchy noise are provided in support of
our analysis.

This research was supported in part by the Office of Naval Research under contract N00014-89-J-1375 and in part by the
Systems Research Center at the University of Maryland, College Park, through the National Science Foundation’s Engineering
Research Centers Program: NSF CDR 8803012,



I. INTRODUCTION

Distributed estimation has attracted considerable attention in recent years (see [1]-[4]). How-
ever, the dependencies in the observations of each sensor or across sensors have not been taken
into consideration. In many practical situations, where the sampling rate increases or the dis-
tributed estimators (sensors) are relatively close to each other geographically, it is necessary to
consider the dependency of observations.

In this paper, we address the following problem for asymptotic (including of a large sample
size N) distributed estimation of a location parameter in dependent noises across sensors: two
sensors without communication make observations X i(k) (with ¢ and k denoting the ith observa-
tion and the kth sensor, respectively) of the same nonrandom location parameter 6 in additive
noise and collectively make their decisions. The forms of the estimation structures are obtained

by minimizing the following cost function

J = Bl - 0+ B89 - )] + s E[(6Y - 60)7)

i

(c1+ c3) E[(6 — 0)°] + (2 + e3) E[(6F) — 8)2] + 2¢3 E[(6% - 8)(65 — 8)] (1)

where ¢1, ¢ and c¢3 are constants and 05\1;) (k = 1,2) is the estimate of the location parameter §
at the sensor k with sample size N. This choice of cost function pertains to the consensus of the
two sensors. As is well known in centralized (single sensor) estimation problems, the estimate
is obtained by optimizing a particular nonlinear function (likelihood function or mean square
error) of the N observations. Similarly, we characterize the estimation structures of the sensors
by nonlinear functions ¢, (:) (k = 1,2) with derivatives gi(-), whose form is to be determined by
minimizing the cost function (1). Therefore, for large N and with these particular estimation

(%) .
N

structures, minimizing (1) with respect to 6y’ is equivalent to performing a minimization of (1)

with respect to the nonlinearities gi(-) (k = 1,2).



Two cases are of interest. First we consider the case, in which the two sensors collect
two sequences of dependent observations but without any correlation across sensors; then we
consider the case, in which the two sequences of observations are correlated across sensors
and time is considered. In both cases, the dependency of noise is characterized by either m-
dependent or ¢-mixing process (see [5]). Since the ¢-mixing model contains the m-dependent
model as a special case, we use, throughout this paper, the ¢-mixing model for the description
of dependence in noise. Let us now state the definition of a ¢—mixing sequence. A stationary
sequence {Yx}32, is said to be ¢—mixing, if, for ¢ > 1,5 > 1 and B; € F{P;» there is a real
sequence {¢x}72, such that

sup |P(Bi N By) — P(B1)P(B;)| < ¢;P(By)
ByeF;
and
o, % =0
where F37; is the o-field generated by {Yx}32,,; and F} is the o-field generated by {Vi}i_;.

Under this ¢—mixing model, the optimal estimation structure should be based on statistics
involving nth (n > 2) order moments (i.e. nonlinearities with memory) which are difficult to
characterize. Therefore, suboptimal decision structures based on memoryless nonlinearities are
used. This type of structure for processing dependent data has been useful in detection problems
(see [6] and [7]). Although this memoryless structure of estimation is not optimal, optimizing the
cost function (1) with respect to the nonlinearities renders a scheme with a better performance
than the one that does not take into account the dependence across sensors and/or time.

The remainder of this paper is organized as follows: In Section II, we first cite the Central

Limit Theorem for ¢-mixing sequences and then use it to characterize the asymptotic means



and variances of the quantities 0&’;) — 0 (k = 1,2); then we express the cost function (1) as a
function of (g4, g;) for large N. In Section III, we consider the case in which each sensor collects
dependent observations but without dependence across sensors. In Section IV, we consider the
case with dependent observations across sensors and time; the special case in which the two
sequences of observations have the same first-order and second-order statistics is of particular

interest. In Section V, we draw the conclusions.



II. PRELIMINARIES

Let the observations of the two sensors be described by
XM =08+ wiH 2)

where Wi(k) (k= 1,2 and i = 1,-.-, N) are two stationary ¢-mixing processes with univariate
densities fi(-). We may assume, without loss of generality, that S; = S = -.- = Sy = 1.
As mentioned in Section I, when the sampling rate increases, {W(k) 182, and {WJ(_]:z %2, become
correlated, for k = 1,2and j = 1,2--.,m. Actually, as m — oo, the dependence is characterized

by a stationary ¢—mixing sequence. Furthermore, the estimates of 8 are based on the structures

with nonlinear functions ¢x(-) (k = 1,2) as follows

O(k) = arg mm Ecpk(X(k) 6) (3)
i=1
where ¢y are nonconstant functions to be determined (for example, @r(-) = —Infi(-) in the well

known case, in which the two sensors i.i.d. sequences and the noise sequences Wz-(l) and Wi(2)
are also independent for all 7). In this particular case, the estimator for each sensor is termed
by Huber the M-estimator, in his framework of robust estimations (see [8]). Let gx = ¢}, be the

derivatives of ¢y (for k=1,2), then 0%) equivalently satisfies

ng x®_oy=0,k=1,2. (4)

i=1

Thus, we can derive the forms of gi (k= 1,2).
For a ¢—mixing sequence and the associated nonlinearities g, we cite the following Central
Limit Theorem (see [5]).

Theorem 1: Suppose that, for k = 1,2, {Yj(k) }%2, are stationary ¢—mixing sequences with

S <0
i=1



and that g, are measurable functions satisfying
k
Elge(Y)] = mr, varlgn(¥{")] < 00

Then the series

o2(g) = varlgu(¥{)] + 23 covlgp(VP)ge (V)] (5)
j=1

converges absolutely. Furthermore, if 0 > 0,

1 n
G = W [Z gk (¥ - nﬂk}
J=1

converges in distribution to a normal distribution with mean zero and variance o%; the pair
(G’S),G’g)) are also asymptotically jointly Gaussian distributed.

Throughout this paper we make the following regularity assumptions:
() the nonlinearities g is continuous and has a uniformly continuous derivative g

(1) @& are continuous convex functions, hence g; > 0;

(i4¢) as N increases, 05\’;) — 0

(iv) o3(g) > 0.

Moreover, we may assume, without loss of generality, that px = E[gr] = 0 (k = 1,2) in the
following formulation. For situations in which ux # 0, we replace gx(-) by gx(-) = gx(-) — px and
all results in this paper still hold.

Next we show that the statistic /N (955) — 6) (for k = 1,2) can be written in an explicit



function of g and ¢’. First, let Tl(f ) = 05\’9 — 8. Then, from (2) and (5), we have

N
Y gwH -1 =0.
=1

Under the above assumptions and with the help of the mean value theorem, we find a A with
0 < A < 1, such that

N N
S (W) - TP Y (W — A1) = 0
=1 =1
for k = 1,2. Therefore,
k
VETH = X W) VE '
K gy w® = xT)/N

(6)

The denominator in (6) asymptotically approachs to E{g], as N increases (see Lemma 5 of [8]).

Thus,

E[VN(6R - 6)- VN(6)) - 0)) = EIVNTY - VNI

— E [ £v=1 gl(Wi(l))/\/N°E£i1 92(Wi(2))/\/]—v-] (7)
E[g1)Elg3)

As the following result is used in this paper extensively, we write it as another theorem (see
(8])-
Theorem 2: Suppose that 0%) — 8 (for k = 1,2), as N increases. Then \,/-]V(O%c) - 6) (for

k = 1,2) is asymptotically normal with asymptotic mean zero and asymptotic variance

% ) = Ulg(gk)
M98 = o) fiw)dw)? ®)

where 2(g) is defined in Theorem 1.

Proof: Because Tl(f ) - 0 and Tj(f ) is given by (6), we immediately have the above result from

Lemma 5 of [8) and Theorem 1 by noticing that (E[g}])? = (- f gx(w) f'(w)dw)?,



Since v N6 is the asymptotic mean of v N 05\5) under assumption (¢3¢) as N increases, we

have (v N, 05\1;) —V/N8)? = V; asymptotically as N increases. Thus, using the form of
VTP = VN - 0)
given by (6) we can write J given by (1) as

J(91,92) = %{(61+03)E[(\/J_V_05\1,)—\/_ﬁ())z]+(C2+c3)E[(\/170§5)—\/170)2]

+2e3E[(VIVOS — VNO)(VN6Y — VNO)]}
(e1+ c3)oi(g) (2 + €3)02(g2)
N (J (@) fi()da) * N ([ ga() fi()dz)’
E [ZE, oW VN - £X, (W) V]
N(J g1(w) fi(w)dw)(J ga(w) o (w)dw)

= -]lv {(61 + ¢3)Vi(g1) + (e2 + e3)Va(g2) + 263P12(gl,92)\/V1(g1)\/Vg(gz)} (9)

+2¢3

(1)
where py3 is the correlation coefficient of 3N, ﬂ%_l and }iL,

E Sk s W)VE - Tl 02(W)/ V]
Vo a)od(02) '

The numerator of the last term in the last expression of (9) asymptotically has, for large N, the

(10)

p12(g1, 92) =

following form (see [9])
N N TR
E [Z a(WIVN - Y gz(W,-(Q))/W] = =2 2 Elg(W ) (W)
=1 i=1 i=1 j=1

= E[pWM)g(W) + 2i Elg (W g (W) (11)

i=1

where m — oo for the ¢—mixing noise case. We notice that (11) is an extension of (5).



III. THE CASE OF DEPENDENCE ACROSS TIME
In this section, we consider the case in which the observations of the two sensors are two

dependent sequences with dependency across them only. Then,
coolgr (W), a(WD) = 0; j=1,2,--

since the two sequences of observations are uncorrelated across time. In addition, let ¢; = ¢y =

¢z = 1. Then the cost function for present situation has the form

_ 203(g1) 203(g2) }
Hong2) {N(fgl(x)f«z)dz)“’ N 22(2) fy(2)da) (12)
where

7o) = [ A 423 [ [ or(@ors)ygm sy (o, v)dedy (13)

=1

with fW;(k)‘W,(-:)l (z,y) being the joint probability density of Wl(k) and Wj(i)l (for k = 1,2) and
m — 00, for ¢—mixing dependence,

Because the value of the above cost function is invariant under the scaling of gx(-) (meaning
that J(g1,92) = J(s191,292) with s; scaling factors), minimizing it with respect to gx(-) is

equivalent to maximizing the following forms (see [5])

() = - [ 9u(@)fife)da + Arot(gr) (14)

for al N and k = 1,2, where )y is the Lagrange multiplier and - fge(z) fi(z)de =
J 9i(z) fr(z)dz > 0 for convex function ¢(-). The minimization of (14) with respect to gx(-),
for each k, has been shown in [5] and the equation to be solved for optimum gi(-) is (with
AL = —1/2)

@)~ [~ a3 A1)y = a@)ie) (15)

i=1



where m — oo for the ¢—mixing noise W; (i = 1,2,.--,N) and

(k) =
fJ (:c’ y) fvvl(k)'pyg_‘;_)1 ({C, y) + fwl("),w.’(,:)l (yaa:)' (16)

Since the search for optimum gx (k = 1,2) for this case is decoupled for the two sensors,
the cost function is the sum of two subcosts, whose inverses are the efficacies of two asymptotic

relative efficiencies (AREs) in [5).



IV. THE CASE OF DEPENDENCE ACROSS TIME AND SENSORS

In situations in which the two sensors are close geographically, it is necessary to consider
the dependence of observations across sensors. Thus, the two sequences of observations are no
longer uncorrelated across sensors.

In this section, we characterize the dependence of the observations across sensors as g—mixing
dependence. In particular, we consider the situation in which fi(z) = fao(z) = f(z) and the

second order statistics of the two observation sequences are identical, i.e.,

Fwo w, (2:9) = @ e (2:9) = fws Wi (2,9)- (17)

Under this symmetric condition, the optimum nonlinearities satisfy g1(-) = g2(-) = g(-).
A. Under the Condition ¢y = ¢cp =c3 =1

The cost function (1) for this case has the form

. 402 4FE Wl(l) w@Ntoym R Wl(l) w?
(o) = (9)+4E[g( );Jr((f;(m))];(x)%;; lg(W7r™)g(W;i1)] (18)

with m — oo, where the form of 6(g) is given from equation (5) of Section III and

ElgWeWi) = [ [ o(@)9)iym o (s, vidody (19)

with fw_(l) w the joint probability distribution of W,-(l) and Wf) forall 4,7 =1,2,--., due to
LR |
the stationarity of fw(’) Wi~ Since the above cost function is also invariant under the scaling
[ A ]

of g(+), minimizing it with respect to g(-) is equivalent to maximizing

f(9)= - [ 9(@)/ @)+ { 20%(9) + ElgWa (W) + 23 E[g(wl‘”)g(W}i’l)]} (20)

i=1
with respect to g(-). Minimization similar to the above one has been shown in [9] with o%(g)

replacing 20%(g). The necessary condition for the maximization of (20) is dH (g4 €8g)/8)c=0 = 0,

10



so that

/ {—f'(z)+ 2L [2g(x)f(=v) + Z / 9(y)(2fi(z,v) + folz,v)/2+ fi(=, y))dy] }og(z)dz =
(21)
where

fi(z,y) = fW]m w(?)l(‘”’ y)+ fw,“) W(-i)l(y’m) (22)
b * J

with fW(" W), defined after (16). The sufficient condition for maximization of (20) is O?H(g+
3

€69)/0% =0 < 0, namely (see [9]),
2AL[202(89) + p12(69)0*(89)] < O (23)

where p12(89) = p12(69,89)- Therefore, (21) with negative Ag is the necessary and sufficient
condition for optimum g(+) to minimize (20). We notice that Az in (20) is a scaling factor of
~g(+). Furthermore, g(z) = ~f'(z)/ f(z) (using a likelihood function ¢(z) = —In f(x)) for i.id.
observations across time and sensors. Hence we may set A\ = —1 /4 to be consistent with the
conventional condition for g(z) = —f'(2)/ f(z) in the ii.d. case. Thus, the final form of the

integral equation satisfied by the optimum g(-) is
1@~ [ Ko wew) = 9@)@) (24)

where

E(e,y) =Y 2fw,w;p (2,9) + fo”vW,(i)l(w’ v+ pr)’Wl(z)(fv, y)/2. (25)

i=1

B. Under the Conditions ¢; =¢c2 =0 and c3 =1

With ¢; = ¢ = 0 and ¢3 = 1, the cost function has the form

207(g) + 2E[g(W ) g(WP)] + 4 =0y ElaW)g(WiH)]
N (f g(z)f'(z)dz)? '

J(g) = E[(0F) - 60y = (26)

11



The minimization of above cost function with respect to g can be obtained in a way similar
to the one in the previous section. We will not repeat the formulation procedure here. The final

form of the integral equation satisfied by the optimum g(.) is
! L
1@ - [ F@ o) = 9(=)1() (27)

where

m
I((:L‘, y) =2 Z[fwhwj+1 (11,', y) + le(l)’W}i)l (.’B, y)] + fWI(I),Wl(Q)(x’ y) (28)
Jj=1

C. Examples
To illustrate the performance of the above two-sensor schemes, we consider a noise process
with a Cauchy probability distribution. This Cauchy noise has a first-order probability density

given by

Sl (2 - )]
where ~00 < 7 < 00 is the median of the Cauchy noise.

The first-order and second-order probability densities of the Cauchy noise can be obtained

from a nonlinear transformation of a Gaussian process, whose first-order density is given by (see

i5))
expl—(z —7)%/2]
fo(@) = —— 7=

with autocorrelation coefficients E[Xl(k)XJ(-f;)l

] = p; (for 5 = 0,1,--. and k = 1,2) across time
and E[XI(I)X ﬁ)}] = p.p; across sensors, where m — oo for ¢—mixing noise and m is finite
for m-dependent noise. Note that, for the dependent Gaussian noise given above, the optimal
nonlinearities for dependent noise (across time and/or sensors) are equal to the ones obtained
for independent noise (across time and/or sensors) except for a scaling factor (see [5]). Thus, the

corresponding optimal cost functions given by (1) are equal. Since the procedure of obtaining

12



the nonlinear transformation is described in [5], we shall not repeat it here. In the following

examples, we set

L—|jl/(m+1) if|jl<m
pj =
0 if [j| > m+1

and p. = 0.7; we evaluate the cost functions for different values of m (i.e. for the m-dependent
model). Note that E[X l(k)XJ(i)l] = 0,|j] > m + 1 for a Gaussian process implies that Xl(k) and
X }_’:)1 are independent of each other, as a result of which the induced Cauchy random variables

are also independent.

13



Ezample 1: This example illustrates the case with ¢; = ¢; = ¢3 = 1 and p(g) = 0. The left
part (Columns 2 and 3) of Table 1 gives the comparison of the cost functions with different
nonlinearities. The second column of this table represents the ratio between the cost J,,; with
the optimal g(-) and the cost Jj;; with the optimal nonlinearities obtained after ignoring the
dependence across sensors for different m. The third column of this table represents the ratio of
the cost J,p; and the cost Ji;q with the optimal nonlinearities (i.e., gi,(z) = — f'(z)/ f(z)) that

are obtained by ignoring the dependences across time and sensors.

m cp=cp=c3=1| cg=c3=0,c3=1

Jias/Jopt Jiid/Jopt Jius/']opt Jiid/Jopt

1 1.030 1.157 1.074 1.252

2 1.040 1.305 1.090 1.437
3 1.045 1.415 1.099 1.570
4 1.048 1.494 1.104 1.667
5 1.050 1.552 1.108 1.737
10 1.054 1.690 1.114 1.902

15 1.055 1.736 1.115 1.957

50 1.056 1.783 1.117 2.011

100 1.056 1.788 1.117 2.016

Table 1: two cases for different values of ¢;, ¢2 and ¢3

Ezample 2: This example illustrates the case with ¢; = ¢2 = 0, ¢ = 1 and p(g) = 0. The right
part (Columns 4 and 5) of Table 1 gives the same type of comparison as the one in the left part

of Table 1 for this case.

14



V. CONCLUSIONS AND EXTENSIONS

Using the cost function defined by (1) we derived an asymptotic scheme with large sample size
N for the distributed (two-sensor) estimation of a parameter @ in dependent noise described by ¢-
mixing or m-dependent sequences. The estimation structures of the two sensors are characterized
by nonlinear functions of the observations k() (k = 1,2). When the sensors employ the
nonlinearities gx(+) = ¢} (+), we have shown that, as N — oo, minimizing the cost with respect
to the estimates 0%)(k = 1,2) of the parameter 8 is equivalent to minimizing it with respect to
the nonlinearities gi(-). The optimum gi(-) are obtained by solving linear integral equations.

This scheme uses estimation structures similar to the M-estimators of [8] which are proposed
in the context of robustness. The mean of the nonlinearities need not to be zero; thus the
univariate probability density of the noise need not to be symmetric. Examples with dependent
Cauchy noise are provided to illustrate the analysis. Table 1 shows that the scheme proposed
in this paper has better performance than the one obtained by ignoring the dependence across
time and/or sensors.

Although the analytical results in the above sections are derived for a constant parameter
(i.e., §4 = S = --- = Sn), the scheme proposed here can be used for a nonrandom parameter

with time-varying value under the assumption

—_ 2
JJ‘.E%O'NZS <o

In this case, we only need replace gi(X; — 055)) with gi(X; — 95\',5).5',') in the analysis (for ¢ =

1,2,...,N and k = 1,2). Then the asymptotic variances in Theorem 2 take the form (see [10])

U;f(yk) )
C (f gr(w) fl(w)dw)?

Vi(gx) =

Therefore, the optimum nonlinearities will satisfy integral equations similar to those derived in

15



Sections III and IV. Finally, to evaluate the optimum nonlinearities we need complete knowledge
of the first- and the second-order statistics of the sensor observations, which may be difficult to
acquire in reality. Therefore, the robustification of our schemes to uncertainties in the first- and

second-order statistics is of interest and it will be the subject of further work in this area.

16
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