Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Characterization of 4H-SiC MOSFETs Using First Principles Coulomb Scattering Mobility Modeling and Device Simulation

    Thumbnail
    View/Open
    umi-umd-2960.pdf (1.313Mb)
    No. of downloads: 3616

    Date
    2005-12-01
    Author
    Potbhare, Siddharth
    Advisor
    Goldsman, Neil
    Metadata
    Show full item record
    Abstract
    Detailed analysis of a 4H-SiC MOSFET has been carried out by numerically solving the steady state semiconductor Drift-Diffusion equations. Mobility models for bulk phonon scattering, surface phonon scattering, surface roughness scattering, Coulomb scattering by interface traps and oxide charges, and high field effects, have been developed and implemented. A first principles Coulomb scattering mobility model has been developed specifically to model the physics of the inversion layer in 4H-SiC MOSFETs. The Coulomb scattering model takes into account, scattering of mobile charges by occupied interface traps and fixed oxide charges, distribution of mobile charges in the inversion layer, and screening. Simulated IV curves have been compared to experimental data. Density of states for the interface traps have been extracted, and seem to be in agreement with experimental measurements. Simulations indicate that occupied interface traps in 4H-SiC MOSFETs are responsible for mobility degradation, low currents and high threshold voltages. Their effect diminishes at high temperatures due to reduction in trap occupancy, and at high gate voltages due to increased screening. At high gate voltages, surface roughness scattering plays the major role in mobility degradation in 4H-SiC MOSFETs.
    URI
    http://hdl.handle.net/1903/3347
    Collections
    • Electrical & Computer Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility