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Detailed analysis of a 4H-SiC MOSFET has been carried out by numerically solving the 

steady state semiconductor Drift-Diffusion equations. Mobility models for bulk phonon 

scattering, surface phonon scattering, surface roughness scattering, Coulomb scattering by 

interface traps and oxide charges, and high field effects, have been developed and implemented. 

A first principles Coulomb scattering mobility model has been developed specifically to model 

the physics of the inversion layer in 4H-SiC MOSFETs. The Coulomb scattering model takes into 

account, scattering of mobile charges by occupied interface traps and fixed oxide charges, 

distribution of mobile charges in the inversion layer, and screening. Simulated IV curves have 

been compared to experimental data. Density of states for the interface traps have been extracted, 

and seem to be in agreement with experimental measurements. Simulations indicate that occupied 

interface traps in 4H-SiC MOSFETs are responsible for mobility degradation, low currents and 

high threshold voltages. Their effect diminishes at high temperatures due to reduction in trap 

occupancy, and at high gate voltages due to increased screening. At high gate voltages, surface 

roughness scattering plays the major role in mobility degradation in 4H-SiC MOSFETs. 
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CHAPTER 1 

1. Introduction 
 

Silicon Carbide is fast becoming a material of reckoning for manufacturing of high 

temperature high power integrated circuits. In addition to a large bandgap, high thermal 

conductivity and a very high breakdown field, the main characteristic that sets SiC apart from 

other wide bandgap materials, is its ability to grow a natural oxide. Like silicon, it is possible to 

grow silicon dioxide on a silicon carbide substrate. This characteristic of SiC makes it easy to 

manufacture SiC MOSFETs and other devices which have been traditionally made using silicon. 

Through the years since the first integrated circuit, silicon based devices have been able to meet 

the need for smaller, faster, cheaper, more reliable, and more diverse electronic circuits. But all 

silicon based ICs have faced limitations in terms of operating temperatures (<150oC) and usable 

power. SiC based devices and integrated circuits will work at much higher temperatures, and 

much higher power, as compared to Si based devices. Table 1.1 shows a comparison of the 

material properties of SiC and Si. Owing to its larger bandgap and superior thermal conductivity, 

it should be possible to use SiC based devices at temperatures up to 500oC. Also, because of the 

large bandgap and huge breakdown electric field, SiC devices can operate at voltages in excess of 

several hundred volts. A large bandgap enables very low leakage currents induced by the build-up 

of free charges, and thermal runaway resulting from impact ionization process. Devices are 
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expected to have fast switching speeds and low energy loss, even at high temperatures. SiC can 

drive the microelectronic revolution originated by Si, to the high temperature high power realm.  

 

Table 1.1. Important physical properties of Si and polytypes of SiC 

 Si 3C-SiC 6H-SiC 4H-SiC 
Bandgap (eV) 1.1 2.39 2.86 3.26 
Bulk Electron Mobility (cm2/Vs) 1500 1000 300 900 
Saturation Velocity (107 cm/s) 1 2 2 2 
Breakdown Field (106 V/cm) 1 2 3 3 
Thermal Conductivity (W/K·cm) 1.5 4.9 4.9 4.9 
Static Dielectric Constant 11.8 9.7 9.7 9.7 

Currently, the biggest challenge in development of SiC devices is low surface mobility at 

the SiC-SiO2 interface. The reason for this low surface mobility has been shown to be extremely 

large densities of occupied interface traps at the SiC-SiO2 interface. The earliest Si devices had 

high interface trap densities at the Si-SiO2 interface. By processing refinements over the decades, 

very high quality SiO2 can now be grown on Si substrates, eliminating almost all interface traps. 

Hence, device simulators for Si devices have little need for models for the effects of interface 

traps on device performance. In order to further develop SiC MOS technology, it is imperative to 

understand in depth, the causes for mobility degradation and the effect of various scattering 

mechanisms, particularly surface roughness scattering, surface phonon scattering and Coulomb 

scattering of inversion layer mobile charges by fixed oxide charges and occupied interface traps. 

Using an advanced drift diffusion MOSFET device simulator and by developing new models for 

interface traps and Coulombic scattering of mobile charges, I have tried to extract and isolate 

causes of device degradation in the various regions of device operation. 
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1.1. Motivation 

 

The motivation of this thesis is to study the device performance of 4H-SiC MOSFETs 

using drift diffusion device simulation and to address the issues causing performance degradation 

in SiC MOSFETs. For this, a methodology has been developed to model the interface traps 

occurring at the SiC-SiO2 interface, their occupancy, and their effects in scattering of inversion 

layer mobile carriers. This has been achieved by developing a comprehensive Coulomb scattering 

mobility model specifically for scattering by occupied interface traps, and by fixed oxide charges 

in SiC MOSFETs. The model has been developed from basic first principles physics of scattering 

of mobile charges by stationary charged scattering centers. I have tried to mold the scattering 

physics equations in the form of a Coulomb Mobility, which can be directly incorporated in the 

drift diffusion simulator. Using this new mobility model, it is now possible to separate out, and 

independently study the effect of the highly dense interface traps in SiC MOSFETs, and discuss 

whether they or some other mechanisms are responsible for the low surface mobility of these 

devices. 

 

1.2. Outline 

The thesis intends to address in detail the issues related to numerical simulation of SiC 

devices, and discuss the mobility models that have been implemented in the drift diffusion 

simulator to model the behavior of 4H SiC MOSFETs.  

In the first chapter, I describe the current and past work that has been done in SiC device 

simulation. I have tried to compile a reasonably complete list of device modeling that has been 

carried out for SiC devices. It is followed by a short description of my approach to address the 

issues of SiC device modeling and simulation. 
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In Chapter 2, I describe the drift-diffusion model for semiconductor devices, and the 

numerical simulation scheme for a 4H-SiC MOSFET. The chapter describes the discretization of 

the semiconductor equations in steady state, the meshing scheme used to extract maximum 

physics of the inversion layer, the numerical methods used to solve the coupled semiconductor 

equations, and the various physical quantities that can be extracted from the drift diffusion model.  

The new Coulomb scattering mobility model developed for 4H SiC MOSFETs is 

described in Chapter 3. I talk in detail about the physics of Coulomb scattering in 

semiconductors, and how it is very important for SiC devices. I describe the methodology of 

deriving a Coulomb Mobility that is easy to incorporate in a MOSFET drift diffusion simulator, 

from basic physics of scattering in semiconductors. 

In Chapter 4, other mobility models representing various other scattering mechanisms 

have been described. I have included the scattering due to bulk phonons, surface phonons, surface 

roughness, and high lateral fields, in addition to the occupied interface trap scattering, in the 

device simulator. I also describe in detail, the modeling of interface trap states in SiC, and a 

method for extracting the fixed oxide charge density from temperature dependent threshold 

voltage data, in this chapter. 

Finally, in the fifth chapter, I describe the simulation results for 4H SiC MOSFETs. I 

discuss the various device performance related results that I have extracted by comparing 

simulated IV curves to experimentally measured data, in this chapter. 

 



5

1.3. Previous work in SiC device simulation 

 

Zeng et al. [1] have shown a method of extracting energy dependent interface trap 

density for 6H and 4H-SiC MOSFETs in the subthreshold region of operation. Scozzie et al. [2] 

have shown the detrimental effects of interface-trapped charge on the SiC MOSFET 

characteristics. Arnold et al. [3] have shown that interface traps in SiC are responsible for 

decrease in transconductance, lower mobile inversion charge density and low drift mobility of 

inversion layer electrons. Saks et al. [4] have shown that severe trapping of electrons at the SiC-

SiO2 interface in 4H-SiC devices causes a reduction in the number of free electrons in the 

inversion layer, and also a drop in the mobility. Correlation between channel mobility and 

interface traps in SiC MOSFETs has also been described by Suzuki et al. [5][6] All these 

observations have been made on the basis of experiments or compact modeling of SiC devices. 

Physics based simulations of deep submicron 4H-SiC MOSFETs have been presented by Dubaric 

et al. [7], but the authors have assumed that there are no interface charges at the SiC-SiO2

interface. Roschke et al. [8] have proposed electron mobility models for 4H, 6H, and 3C SiC, 

which describe the dependence of the electron mobility on doping concentration, temperature and 

electric field. They too, have not shown any effect of interface traps in their mobility models. 

Nilsson et al. [9][10] have described Monte Carlo and drift diffusion simulations of 4H and 6H-

SiC field effect transistors. But they have only considered acoustic phonon scattering, polar and 

non-polar optical phonon scattering, and ionized impurity scattering. Mickevicius et al. [11] have 

carried out Monte Carlo simulations for SiC, but he has focused on phonon scattering and ionized 

impurity scattering. Roldán et al. [12] include the effect of a net interface charge in their work. 

However, their interface trap model is not energy dependent. But experimental measurements of 

interface state density of states for SiC have shown that the density of states is energy dependent. 

Vathulya et al. [13] have used an energy dependent interface state density of states model for 4H 
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and 6H-SiC MOSFETs, and have extracted the inversion layer mobility by fitting the current 

equations to experimental data. They have used compact modeling and numerical methods to 

solve sets of equations simultaneously to extract an average mobility. Powell et al. [14][15] have 

described in detail various mobility models for 6H SiC MOSFETs. Their mobility model 

incorporates the effect of scattering due to occupied interface traps. But they do not show how 

scattering varies with depth inside the inversion layer. Their method for dealing with screening of 

the scattering charge centers in deep inversion is empirical.   

 

1.4.  My Approach 

 

My aim is to address the issue of the need for a proper comprehensive mobility model for 

SiC MOSFETs that can accurately model the physics of the inversion layer in SiC MOSFETs, 

and is simple enough to be included in a drift diffusion simulator. In addition to the usual 

scattering mechanisms, the mobility model should be able to describe the effect of scattering of 

inversion layer mobile charges by the occupied interface traps a the SiC-SiO2 interface, fixed 

oxide charges distributed at the interface and in the oxide. In the process, I will be building upon 

the work done by others, and develop a sophisticated drift diffusion device simulator for SiC 

MOSFETs. 

To solve this problem, I started at the basic physics of Coulombic scattering of charges. I 

developed a quasi 2D Coulomb scattering model, which described how inversion layer electrons 

are scattered by stationary charges located at the semiconductor-oxide interface, and/or some 

distance inside the oxide itself. Using this scattering model, I was able to write an equation for the 

Coulomb mobility, which was dependent on the density of occupied traps, density of fixed oxide 

charges, distance between the scattering charges and inversion layer mobile charges, screening of 
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the scattering charges by the mobile charges, and temperature. The Coulomb mobility equation 

was simple enough to be included in the drift diffusion modeling scheme. 

In order to verify the accuracy of my model, and also to judge the importance of various 

scattering mechanisms in a 4H-SiC MOSFET, I compared my simulations to experimental data. 

To make confident predictions about the future performance capabilities of SiC MOSFETs, I first 

use the experimental data to calibrate my simulator. Once I have determined the proper material 

properties for my model, and have the comparisons of various performance degrading 

mechanisms, I can predict the performance of future SiC MOSFETs. My simulations also show 

that the interface traps lying at different energy levels inside the SiC bandgap have effects at 

different gate voltage levels. The interface state trap density profile extracted from simulations 

and comparisons with measured IV data seems to agree with values measured by experiments. 
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CHAPTER 2 

2. Drift Diffusion Modeling and Numerical Analysis 
In this chapter, I will present the drift-diffusion model which serves as the basis for the 

numerical simulation of a SiC MOSFET device. I begin by reviewing the drift-diffusion 

equations and how they are used for the specific case of simulating a MOSFET device. I will also 

present the discretization scheme for these equations and the numerical methods that have been 

used to solve them. 

 

2.1. Drift Diffusion Model 

 

The drift diffusion equations serve as the basic building blocks for semiconductor device 

modeling and can be derived directly from Maxwell’s equations for electromagnetic radiation and 

the Boltzmann transport equation of kinetic theory. They are, in essence, equations derived from 

the Boltzmann transport equation by doing certain approximations. The drift diffusion equations 

consist of the Poisson’s equation, the equations for electron and hole currents, and the current 

continuity equations for electrons and holes. In this section, I describe these equations in brief and 

then elaborate a little on the numerical methodology that is implemented to solve them for a SiC 

MOSFET device.  



9

2.1.1. Poisson’s Equation 
 

The first of the drift-diffusion equations is the Poisson’s equation. It relates the 

electrostatic potential (φ), to the net charge density (ρ) inside a semiconductor. 

( ) ρφε −=∇⋅∇ rr
(2.1) 

ρ is the net charge density and ε is the dielectric permittivity of the material in which the charge 

is present. Inside the semiconductor, the charge particle concentration consists of negatively 

charged electron concentrations (n), positively charged hole concentrations (p) and the ionized 

dopant concentrations (D). The dopants are further separated into positively charged donors (ND
+)

and the negatively charged acceptors (NA
-). Substituting these values for the net charge density, 

the Poisson equation can be rewritten as: 

( ) ( )Dpnq −−−=∇⋅∇ φε rr
(2.2) 

where, q is the net charge on a single electron, and 
−+ −= AD NND (2.3) 

The electron (n) and hole (p) concentrations are written in terms of the electron and hole 

quasi-Fermi levels (φn and φp). 





 −=

T

n
i Vnn φφexp  (2.4) 





 −−=

T

p
i Vnp φφexp  (2.5) 

where, ni is the intrinsic carrier concentration and VT is the thermal voltage. 
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2.1.2. Current Equations 
 

There are two phenomena causing current flow in a semiconductor: (i) Drift and (ii) 

Diffusion. Presence of an electric field in a semiconductor will cause the free electrons and holes 

to drift along the field lines. This method produces a current which is known as the drift current. 

If there is concentration gradient of the electron or hole concentrations, the electrons and holes 

will flow from the higher concentration region to their lower concentration region generating a 

current. This current is termed as the diffusion current. The contribution of carrier transport due 

to drift can be formulated as: 

nn vqnJ
drift

rr −= (2.6) 

pp vqpJ
drift

rr = (2.7) 

where nvr and pvr are the drift velocities of electrons and holes respectively, due to an applied 

electric field. These velocities can be expressed in terms of the mobilities ( nµ and pµ ), and the 

applied field ( Er ). 

Ev nn
rr µ= (2.8) 

Ev pp
rr µ= (2.9) 

The diffusion component of carrier transport is due to random motion and gradients in the 

mobile charge concentration, and is described by the following: 

( )nn nDqJ
diff

∇=r
(2.10) 

( )pn pDqJ
diff

∇−=r
(2.11) 

nD and pD are the electron and hole diffusion coefficients respectively. They can be related to 

the electron and hole mobilities by the Einstein relations: 
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q
TkD B

nn µ= (2.12 

q
TkD B

pp µ= (2.13) 

Here, kB is the Boltzmann’s constant, and T is the temperature.  

Combining both, drift and diffusion components, the total expression for the electron and 

hole currents inside a semiconductor is given as:  

( )nnnnn nDqEqnJJJ
diffdrift

∇+=+= rrrrr µ (2.14) 

( )ppppp pDqEqpJJJ
diffdrift

∇−=+= rrrrr µ (2.15) 

Writing the electric field E as a gradient of the electrostatic potential, φ∇−= rrE , the 

current equations can be rewritten as: 

( )nnn nDqqnJ ∇+∇−= rrr φµ (2.16) 

( )ppp pDqqpJ ∇−∇−= rrr φµ (2.17) 

 

2.1.3. Continuity Equations 
 

The continuity equations are based on the conservation of mobile charge. They relate the 

change in mobile charge concentration in time to the gradient of the current density, and the rates 

of generation and recombination of carriers. For electrons, the continuity equation is written as, 

nnn GRJqt
n +−⋅∇=∂
∂ rr1 (2.18) 

The continuity equation for holes is given by 

ppp GRJqt
p +−⋅∇−=∂
∂ rr1 (2.19) 
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where nG and pG are the electron and hole generation rates, nR and pR are the electron and 

hole recombination rates, and nJrr ⋅∇ and pJrr ⋅∇ are the net flux of electrons and holes in and out 

of the specific volume. The current continuity equations simply state that the total current flow 

into or out of a volume of space is equal to the time varying charge density within that volume 

plus any additions due to generation or recombination that may occur. 

 

2.1.4. Steady State Drift Diffusion Model 
 

In steady state, there is no net change in electron and hole concentration over time. 

Hence, the continuity equations for electrons and holes can be equated to zero. 

01 =+−⋅∇=∂
∂

nnn GRJqt
n rr

(2.20) 

01 =+−⋅∇−=∂
∂

ppp GRJqt
p rr

(2.21) 

Substituting the formulae for nJr and pJr from the current equations in the above 

equations, we have, 

( )[ ] 0=+−∇+∇−⋅∇ nnnn GRnDn rrr φµ (2.22) 

( )[ ] 0=+−∇−∇−⋅∇ pppp GRpDp rrr φµ (2.23) 

Equations 2.20 and 2.21 along with the Poisson’s equation (2.1) form the steady state 

drift diffusion system of equations. These equations are to be solved for the electrostatic potential 

(φ), the electron concentration (n) and the hole concentration (p) inside the device. 

It is apparent from the above equations that the mobility, generation and recombination of 

electrons and holes play important roles in the physics of carrier transport in a device. I will be 
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describing the mobility model used for 4H-SiC MOSFET devices in detail in the next two 

chapters. I will briefly touch upon the generation-recombination mechanisms next. 

 

2.1.5. Generation and Recombination 
 

For SiC MOSFET simulation, two types of recombination mechanisms have been 

modeled. The recombination occurring due to trap centers (Shockley-Read-Hall) and due to direct 

particle recombination (Auger). The generation of particles due to impact ionization is also 

included. 

 

Shockley-Read-Hall (SRH) Recombination 

The capture and emission of holes and electrons by traps that reside in the mid-band 

energy zone is modeled using the well known Shockley-Read-Hall (SRH) mechanism of 

recombination. The SRH recombination rate is given by 

( ) ( )inip

iSRH
npnn

nnpR +++
−= ττ

2
(2.24) 

where, nτ and pτ are the minority carrier lifetimes of electrons and holes respectively. The 

minority carrier lifetimes for SiC are in order of a few nanoseconds. They are typically around 2 

orders of magnitude less than those for Si. 

For a n-doped SiC slab, when there is a current flowing through the device, the electron 

concentration is much higher than the hole concentration ( )pn >> . If the carrier lifetimes of 

electrons and holes are taken to be equal ( )pn ττ ≈ , then the SRH recombination rate can be 

written as 
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pp

SRH p
n

npR ττ =≈ (2.25) 

At room temperature, the intrinsic carrier concentration of 4H-SiC is around 2×10-8 cm-3.

For a slab of SiC doped with n-type impurity of the order of 1018 donor atoms per cubic 

centimeters, at room temperature, the hole concentration is going to be around (10-8)2/1018 which 

is approximately 10-30 cm-3. Hence, it is easy to see that the SRH recombination rate in SiC is 

going to be very small (around 10-20 cm-3/s).  

 

Auger Recombination 

SiC is an indirect bandgap semiconductor. Hence the probability of a direct band-to-band 

recombination by transfer of energy to another carrier is very small. Hence, this recombination 

mechanism, known as the Auger recombination is rare in SiC devices. In the direct recombination 

process, a free electron in the conduction band combines with a free hole in the valence band, and 

the net momentum of the two particle system is carried off by a third free particle, which can be 

an electron or a hole. The Auger recombination rate is given by 

( )( )pCnCnnpR pni
Auger +−= 2 (2.26) 

where, Cn and Cp are the coefficients representing interactions in which the remaining carrier is 

an electron and a hole respectively.  

Impact Ionization Generation 

Generation of particles occurs when a particle with high energy collides with a bonded 

particle resulting in one additional free electron and one additional free hole. This type of 

generation is referred to as impact ionization generation. In SiC, it is seen that the free particles 

do not attain very high energy due to the very high bandgap. Hence, the impact ionization 
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generation rate is very small. The impact ionization generation rate is modeled as proportional to 

the carrier current density [16].  

( )||||1
ppnn

II JJqG rr αα += (2.27) 

where, 





 −= ∞

||exp ,
,, E

b pn
pnpn rαα (2.28) 

GII is the net impact ionization generation rate, an(p) is the per unit length generation 

coefficient for electrons (holes), and bn(p) is the electric field at which impact ionization 

generation becomes significant. 
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2.2. Numerical Methods for Drift-Diffusion Simulation of SiC MOSFETs 

 

In this section I will describe the numerical methods used for solving the drift diffusion 

equations for the specific case of a SiC MOSFET device. In order to solve the coupled partial 

differential equations comprising the drift diffusion system of equations, a proper methodology 

has to be followed. The equations are solved for 2D structure, which is a section cut parallel to 

the channel of the MOSFET. These equations are solved for the electrostatic potential (φ), the 

electron concentration (n) and the hole concentration (p) at discreet mesh points inside the device, 

in the source, drain, bulk and the oxide regions. Appropriate boundary conditions for φ, n and p,

based on the applied voltages at the various regions, are built in to the system. I will describe the 

boundary conditions, the meshing scheme, the discretization of the semiconductor equations, and 

the numerical methods used for solving the discretized system of equations. 

 

2.2.1. Boundary Conditions 
The MOSFET device structure is shown in figure 2.1. It is divided into the source, the 

drain, the bulk, the oxide and the interface regions, where the semiconductor equations are to be 

solved. The boundary regions are the regions where external voltage is applied or an artificial 

boundary is created. 
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Figure 2.1. 4H-SiC MOSFET device structure 
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Ohmic Contact 

The source, bulk and drain contacts shown in figure 2.1 are modeled as Ohmic contacts. 

That is, there is no resistance of the contact itself. Hence, all the voltage applied at these contacts 

is transferred to the semiconductor below. The boundary condition for the electrostatic potential 

is therefore given by 

nCC V φφ += (2.29) 

for Ohmic contacts on n-type material and  

pCC V φφ += (2.30) 

for Ohmic contact on p-type material. 

Here, nφ and pφ are the built in potentials for n-type and p-type semiconductors in 

thermal equilibrium. For an n-type material with a doping of +
DN , the built in potential is simply 

i

D
Tn n

NV
+

= lnφ (2.31) 

and for a p-type semiconductor doped of −
AN , the built in potential is 

i

A
Tp n

NV
−

−= lnφ (2.32) 

where, ni is the intrinsic carrier concentration at temperature T and VT is the thermal voltage. 

As there is no power loss in the Ohmic contact, and the carriers are at thermal 

equilibrium, we can say that there exists charge neutrality in the contact volume. Hence, the total 

charge density is equal to zero. 

( ) 0=+−= Dnpqρ (2.33) 

where, −+ −= AD NND .
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Since we are at thermal equilibrium, 2
innp = . Hence, for a n-type semiconductor at the 

Ohmic contact, 

n
np i

2
= (2.34) 

and 

2
4

2
22
inDDn ++= (2.35) 

Similarly, for a p-type semiconductor region at the Ohmic contact, 

p
nn i

2
= (2.36) 

and 

2
4

2
22
inDDp ++−= (2.37) 

 

Gate Contact 

There are no mobile charge carriers inside the gate oxide. Hence, only the Poisson’s 

equation is solved inside the oxide with the charge density taken as zero. The semiconductor 

equations are not solved for n and p inside the oxide; hence no boundary conditions are needed 

for n and p at the gate contact. The boundary condition for the electrostatic potential on the gate 

contact is defined as 

VGBVGG +=φ (2.38) 

VG is the applied gate voltage and VGB is the built-in gate voltage. It is equal to the 

metal-semiconductor work function difference between the gate metal and the semiconductor epi-

layer of the 4H-SiC MOSFET. The 4H-SiC MOSFET used for measurements has a n-type 

polysilicon gate doped at 1020 cm-3 and an p-type epi-layer doped at 5×1015 cm-3. Hence, as 
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shown in Figure 2.2, the work function, which is the difference between the Fermi levels of the 

polysilicon gate and the 4H-SiC epi-layer, can be written as 

eV
n

NTkE

EE

Si
i

poly
D

B

Si
gSi

Si
B

Si
g

Si
Si
F

06.4

ln2

2

=




−+=

−+=

χ

ψχ

(2.39) 
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gSiCH
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gSiCHSiCH

F
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ln2

2

4

4
4

4
4

44

=




++=
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−

−
−

−
−

−−

χ

ψχ

(2.40) 

 

( ) VGBEEq SiCH
F

Si
FMS ==−−=Φ − V91.24 (2.41) 

 

Here, χSi = 4.05eV, χ4H-SiC = 3.95eV, Eg
Si = 1.1eV, Eg

4H-SiC = 3.26eV, ND
poly = 1020cm-3, NA

epi = 

5×1015cm-3, ni
Si = 1.2×1010cm-3, ni

4H-SiC = 1.88×10-8cm-3, T = 300oK, q = 1.6×10-19C and 

kB=1.38×10-23J oK-1 
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Figure 2.2. Work function difference between n-type polysilicon gate and p-type epi-layer 4H-
SiC MOSFET . 
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Artificial Boundaries 

Artificial boundaries consist of all boundaries in which the device structure ceases to 

exist for simulation purposes, but in reality, this boundary may not exist on the device physically. 

The artificial boundaries are placed far enough away from the carrier transport activity where the 

change in electrostatic potential, electron concentration and hole concentration, across the 

boundary, is negligible. Hence at the artificial boundaries, we have the conditions 

0=∂
∂=∂

∂=∂
∂

N
p

N
n

N
φ (2.42) 

where N∂
∂ is the derivative taken in the direction normal to the artificial boundary. 

 

2.2.2. Finite Difference Discretization of the Semiconductor Equations 
 

In order to solve the system of coupled differential equations comprising the drift 

diffusion model, each equation must be discretized in space. In this section I present the 

discretization scheme for the Poisson’s equation and the current continuity equations. The 

Poisson’s equation is solved inside the semiconductor and the oxide, whereas the current 

continuity equations are solved only inside the semiconductor. At the semiconductor-oxide 

interface, the Gauss’s law is implemented in order to solve for the electrostatic potential. 

 Each equation is discretized in two dimensions using the finite difference method where 

each position, (x, y), in the device is mapped to a mesh point, (i, j). The position of x, at the ith 

mesh line is designated by the notation xi; likewise, the position of y, at the jth mesh line is 

designated by the notation yj. If it is needed, additional points can be defined as lying between 

two consecutive mesh points. These points are designated by 


 ± ji ,2
1 or 


 ± 2

1, ji . The 

distance between two mesh points are designated by the variables hi and kj.
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iii xxh −= +1 (2.43) 

jjj yyk −= +1 (2.44) 

Other variables will be defined for the purposes of simplifying the writing of the 

discretized equations. 

Poisson’s Equation 

Poisson’s equation gives an analytical representation of the relationship between 

electrostatic potential (φ) and the net charge distribution.  

 

Semiconductor-Insulator Interface 

At the semiconductor-oxide interface, it is assumed that there are no free electrons and 

holes, and that the difference in the electric displacement vectors in the insulator and the 

semiconductor is equal to the effective surface charge. 

( ) surfsisurf QDDa =−⋅ rrˆ (2.45) 

where, Dr is the electric displacement vector and surfQ is the effective surface charge density at 

the semiconductor-oxide interface, and surfâ is a unit vector in the direction of the 

semiconductor-oxide interface. 

This equation can be rewritten in form of Gauss’s law by writing the electric fields at the 

semiconductor-oxide interface.  

surfssoxox QEE =− εε (2.46) 

Here, the electric fields are the fields perpendicular to the interface. Writing them using the 

electrostatic potentials, we have 

surf
s

s
ox

ox Qyy =




∂
∂−−




∂
∂− φεφε (2.47) 
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Writing the discretized forms of the first order derivatives we have the equation for the 

electrostatic potential at the interface. 

0
1

,
1

1,1,, =+



 +−



+



=

−−
−+ surf

j

ox

j

s
ji

j

ox
ji

j

s
jiji QkkkkF

oxox
ox

ox
ox

ox
oxox

εεφεφεφφ (2.48) 

where, jox represents the mesh-line j which defines the interface. Qsurf is the net effective surface 

charge at the mesh-point (i, jox). It is the sum of the fixed oxide charge and the interface trapped 

charge at that mesh-point. 

 

Inside the Oxide 

There is no charge present inside the oxide. Hence, the Poisson’s equation will look like a 

simple Laplacian. 

02 =∇ φ (2.49) 

Finite difference discretization of the above equation has the following form. 

01111
2
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,1
, =
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
 +++−+++= −+−+

kkhhkkhhF ji
jijijiji

ji φφφφφφ (2.50) 

where,  

( ) ( ) ( ) ( )
2,2,2,2

112
2

12
1

112
2

12
1

−−−−−− +=+=+=+= jjjjjjiiiiii kkkkkkkkhhhhhhhh (2.51 - 54) 

 

Inside the Semiconductor 

Rewriting the Poisson’s equation inside the semiconductor, 







+



 −−+



 −−−=∇ ji

T

pji
i

T

nji
i

s
ji DVnVnq

ji
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ji

ji

ji
ji ,

,,
,

2

,

,
,

,

,
,

expexp
φφφφ

εφ (2.55) 

Finite difference discretization of the above equation has the following form. 
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(2.56) 

Steady State Electron Current Continuity Equations 

The steady state electron and hole current continuity equations are solved at all mesh-

points inside the semiconductor. They are discretized by the Scharfetter-Gummel scheme. The 

temperature term in the equation is modeled as a local temperature Ti,j. If the drift diffusion 

equations are coupled with the heat flow equation, then we would be able to extract the heat 

characteristics of the device. But I have not used the heat flow equation in my simulations, so the 

local temperature is in effect constant, and is equal to the operating temperature of the device. 

 The Scharfetter-Gummel discretization of the steady state electron current continuity 

equation is given as  
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(2.57) 

jin , is the electron concentration at mesh-point (i, j). 

 

( )γβ is the Bernoulli function defined as 
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( ) ( ) 1exp −= γ
γγβ (2.58) 

and, 
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The mobility terms in the above equation are written as, 

2
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(2.63, 64) 

Here, 
jixn ,

µ and 
jiyn ,

µ stand for the x-direction and the y-direction electron mobility respectively, 

at mesh-point (i, j)

Steady State Hole Current Continuity Equations 

The hole current continuity equation can be discretized the same way as the electron 

current continuity equation. 
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The mobility terms in the above equation are written as, 

2
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(2.66, 67) 
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Here, 
jixp ,

µ and 
jiyp ,

µ stand for the x-direction and the y-direction hole mobility respectively, at 

mesh-point (i, j)

2.2.3. Numerical Methods 
 

There are two numerical methods that are used to solve the set of discretized equations 

shown in the section above. The first method is an iterative Gummel Block method which starts 

with an initial guess for φ, φn and φp, at all mesh-points inside the device and solves the three 

equations consecutively, to get to a solution. This solution acts like the initial guess for the next 

solver, which is the Newton solver. The Newton solver solves for all three variables φ, φn and φp

at all mesh-points simultaneously, using the Gauss-Newton Algorithm. 

 

Gummel Block Method 

The Poisson, electron current continuity, and the hole current continuity equations are 

solved for the electrostatic potential (φ), electron quasi-Fermi level (φn), and the hole quasi-Fermi 

level (φp), respectively, one after the other, using an iterative solver.  

First, the discretized Poisson’s equation is solved for φ at all points in the mesh using an 

iterative method. In this case, φn and φp are kept constant. Next, using the new φ calculated over 

the mesh, the discretized electron current continuity equation is solved for φn over the mesh. In 

this case, φ and φp are not allowed to change. Finally, using the new φ and φn values, the hole 

current continuity equation is solved at all mesh points and the new φp is obtained.  

The discretized finite-difference equations are solved using the iterative Gauss-Seidel 

method. Here, as an example, I show how the solution for φ is obtained iteratively. 
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The discretized Poisson’s equation is arranged in the form shown below 

( ) 0,, =pn
kf φφφφ (2.68) 

where, k denotes the current iteration. The solver begins with an initial guess for φ at all mesh 

points in the device. 

According to Newton’s method for solving nonlinear equations, we can write  

( ) ( ) 0,,,,1 =




∂
∂⋅∆+=+

k
k

pn
k

pn
k fff φφφφφφφφ φ

φφ (2.69) 

Hence, we have,  

( )
k

k
k

f
f





∂

∂
−=∆

φ
φ

φ

φ (2.70) 

and, 
kkk φφφ ∆+=+1 (2.71) 

Here, φ = φi,j = electrostatic potential at the mesh point (i, j). The iterations continue till the error 
kφ∆ falls below a prescribed error criterion. 

Once convergence is reached for the electrostatic potential, a similar method is used to 

solve for the electron quasi-Fermi level (φn) and then for the hole quasi-Fermi level (φp). Once we 

have convergence for all three, we switch to the faster Newton’s method. 

Newton Method 

Unlike the Block Gummel Method, the drift-diffusion equations remain coupled in this 

method. So φ, φn and φp are computed simultaneously. This is accomplished by defining a 

Jacobian matrix and solving for the changes in the three variables between iterations. This 

process is represented as matrix equation as 
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where, the vectors pn φφφ rrr ,, signify that the matrix operation is performed for all non-boundary 

mesh points of the variables φ, φn and φp. Once the above matrix equation is solved, the new 

values for φ, φn and φp are obtained as  

 
kkk φφφ ∆+=+1 , k

n
k
n

k
n φφφ ∆+=+1 and k

p
k
p

k
p φφφ ∆+=+1 (2.73, 74, 75) 

 

φF ,
n

Fφ and 
p

Fφ are as shown in equations 2.48, 2.50, 2.56, 2.57, and 2.65. The Jacobian 

matrix is made up of the derivatives of these functions with respect to φ, φn and φp.

The Newton solver is allowed to iterate till it reaches the specified convergence condition 

for all three variables. Then the current is calculated inside the channel, at the drain contact, at the 

source contact and at the substrate contact. If the current is continuous across the device, then the 

simulation is proper and all relevant data is stored in various files. A simple flowchart for the 

simulator is shown in Figure 2.3. 
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Figure 2.3. Flowchart for solving the drift-diffusion semiconductor equation system 
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2.2.4. 2D Mesh 
A 2D non-uniform mesh has been created for discretizing the drift-diffusion equations for 

the MOSFET structure. The mesh is very fine near the drain and the source junctions where there 

is rapid change in potential and charge concentration. Whereas, near the center of the device, the 

mesh is coarse as there is not much variation in these physical quantities there. In order to capture 

the physics of the inversion layer, the mesh is kept very fine near the interface. The mesh spacing 

is kept as low as 2Å near the interface. This has enabled me to extract detailed physics of the 

inversion layer. For example, mobility variations as a function of depth near the interface, or the 

current density variation as a function of depth in a 4H-SiC MOSFET. The mesh is carefully 

crafted so that the electrostatic potential does not vary by more than then thermal voltage within 

adjacent mesh points. 
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CHAPTER 3 

3. Coulomb Scattering Mobility Model 
In this chapter I describe in new Coulomb scattering mobility model in detail. I first talk 

about the need for a robust mobility model for Coulombic scattering of inversion layer electrons 

due to the trapped charges at the interface and the fixed charges in the oxide. Then, I describe the 

derivation of the Coulomb scattering rate and the Coulomb mobility from basic first principles 

physics. At the end I present my observations on this mobility model, and how well it reflects the 

various physical phenomena occurring in the inversion layer of a 4H-SiC MOSFET. 

 

3.1. Need for a Robust Coulomb Scattering Mobility Model for 4H-SiC 

MOSFETs 

 

Coulomb scattering of inversion layer mobile charges takes place due to the presence of 

occupied interface traps and fixed oxide charges at the SiC-SiO2 interface. The Coulomb potential 

due to these trapped charges and oxide charges decreases with distance. Hence, mobile charges 

located close the interface experience more scattering as compared to the ones located away from 

the interface. Hence, a Coulomb scattering mobility model for the mobile charges needs to have a 

dependence on the distance between the mobile charge and the scattering charge center. Further, 
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the Coulomb potential is screened by the mobile charges. Hence the Coulomb mobility should 

also include the effect due to screening. As the density of trapped charge is very high for SiC 

MOSFETs, Coulomb scattering is an important phenomenon limiting the conductivity mobility in 

the inversion layer. All these factors prompted me to develop a quasi 2D Coulomb scattering 

mobility model which takes into account the effect of scattering due to interface trapped charges 

and fixed oxide charges, distribution of the fixed charges inside the oxide, distribution of mobile 

charges inside the inversion layer, and screening of the scattering charges by inversion layer 

mobile charges. The Coulomb mobility is also temperature dependent, because the density of 

occupied traps decreases with temperature and the effect of screening reduces with temperature. 

 

Mobility models for Coulomb scattering of electrons by impurities in the semiconductor 

have been described in literature [16][18]. The impurities are distributed in the inversion layer 

and so the Coulomb scattering is three dimensional in nature. This model is not applicable to 4H 

SiC MOSFETs because all the scattering charges are located at the interface or some distance 

inside the oxide, while all mobile charges are located below the interface. Brooks-Herring model 

described Coulomb scattering for a 3D electron gas. 2D scattering by a Coulomb potential has 

been described by Ando et al. [19]. The authors have assumed the inversion layer to be a sheet of 

charge and an average mobility is calculated. Sah et al. [20] have described 2D Coulomb 

scattering of electrons by surface oxide charges. They have included the effect of electrons being 

distributed in the inversion layer and also of distribution of fixed charges inside the oxide [21]. 

But their mobility model does not have an explicit z-dependence that can be incorporated in a 2D 

device simulator. They assume various distribution functions for inversion layer electrons and 

scattering charges and calculate an average mobility based on that. Gamiz et al. [22] have 

described a very complex 2D Coulomb scattering model which is not suitable for inclusion in a 

drift diffusion device simulator. My mobility model does not require any specific distribution 

function for electrons in the inversion layer, or any distribution function for fixed charges inside 
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the oxide. It directly uses fixed charge densities at specific depths inside the oxide and the 

calculated electron concentration at various depths inside the semiconductor to calculate the 

scattering rate. Hence, it is easily incorporated in a 2D device simulator.  

 

3.2. Deriving the quasi 2D Coulomb Scattering Rate Equation 

 

The following assumptions are made about the distribution of the charged impurities 

causing Coulomb scattering of mobile carriers. 

The charged impurities are of two types, fixed oxide charges and interface trapped 

charges. All these charges are located at the interface or inside the oxide. The positions of the 

scattering charge centers at the interface and inside the oxide are given by zi, while the positions 

(depth) of the mobile carriers inside the semiconductor are given as z. z = zi = 0 at the interface. I 

will be deriving the scattering model for electrons as the mobile carriers. Hence, from now on, 

electrons are taken as the mobile charges in the inversion layer. 

 

We start with a 3D screened Coulomb potential [18]:  

rscqer
erV −⋅⋅= rr 1

4)(
2

επ (3.1) 

Here, ε is the average permittivity given as [19] 

2
SiCox εεε += (3.2) 

And the screening wave vector scq is given as the inverse of the Debye length for semiconductors  

eBavSiC

inv
sc TkZ

Neq ε
2

= (3.3) 
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Here, Ninv is the average 2D inversion charge density at any point along the channel of the 

MOSFET. I calculate this 2D inversion charge density by integrating the 3D electron 

concentration over the depth inside the semiconductor. I obtain the electron concentration at each 

mesh point inside the device by solving the semiconductor equations described in Chapter 2. 

Hence, the 2D inversion charge density is calculated by integrating these discreet electron 

concentration values numerically.  

( )∫ ∞=
== z

zinv dzznN
0

(3.4) 

Also, Zavg is the average depth of the inversion layer at any point along the channel of the 

MOSFET. It is evaluated by integrating the product of the depth and the 3D electron 

concentration and dividing it by the inversion charge density. 

 

( )
( )∫

∫
∞=

=

∞=
=

⋅
⋅⋅= z

z

z

z
avg dzzn

dzznz
Z

0

0 (3.5) 

 

In order to obtain the scattering rate, I need to formulate the perturbation factor (the screened 

Coulomb potential) in to the Fermi Golden Rule. The Fermi Golden Rule gives the transition rate 

( kk rr ′→Γ ) for a scattering mechanism as  

( )kk
2

kk ||2
rrrr

h ′′→ −=Γ EEH δπ (3.6) 

Where, krE and kr ′E represent the energy of the mobile charge at the initial and final states kr and 

kr′ .
The matrix element in Fermi’s Golden rule can be written for the 3D Coulomb scattering 

case as  

( ) ( ) rderVerVeH rqi

r

rkirki
D

DDD rrr rr

r

rrrr ⋅⋅′⋅− ⋅== ∫ 333 ||3 (3.7) 
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where DDD kkq 333
' rrr −= . This looks like a 3D Fourier transform. Substituting for ( )rV r from 

equation (3.1), we can write the integration using spherical co-ordinates as 

∫∫∫
==

∞

=

−=
π

θ

θ
π

φ
θθφεπ 0

cos
2

00

2
2

3 sin1
4

3 deddrrer
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r
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Dsc  (3.8) 

Using change of variable θcos=t
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On applying the limits we get, 

22

2

3
3

1
Dqq

eH
sc

D += ε (3.13) 

This is the matrix element for the case of 3D Coulombic scattering. I am going to treat 

the Coulomb Scattering of inversion layer charges as a quasi 2D scattering phenomenon. As all 

the scattering charges are located at the interface or inside the oxide, and the mobile carriers 

being scattered are located at different depths in the inversion layer, the Coulomb scattering 

potential seen by the mobile charges depends upon the distance between them and the scattering 

charges. Hence the inversion charges located at different distances from the interface are scattered 

at different rates. For writing the scattering equations for a quasi 2D scattering phenomenon, I 

need to find the quasi 2D scattering matrix element H2D. I assume that the scattering takes place 

in the X-Y plane, and is different for charges located at different positions in the z direction. 
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Hence, by taking the Inverse Fourier Transform of the 3D matrix element along the qz direction, I 

will get the matrix element for a quasi 2D scattering phenomenon. 

I first split the 3D scattering wave vector in to a 2D component and a z-component. The 

3D scattering wave vector is written as  

22
23 zDD qqq +=  (3.14) 

Taking zqr in the direction of z, I can write the 2D matrix element by taking the Inverse 

Fourier Transform as 
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I solve this complex integral using the Residue method by considering the complex 

contours c1 and c2 shown in Figure 3.1. The complex integral can be solved as 
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This is the z-dependent quasi-2D scattering matrix element that will be used to calculate the 

Coulomb scattering rate. 
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Figure 3.1 Complex poles (p1 and p2) of the term inside the integral which gives the quasi-2D 
matrix element H2D (Equation 3.11). c1 and c2 are the complex contours that are used to evaluate 
the complex integral by the residue method.  
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Using the matrix element of equation (3.20) and the Fermi Golden Rule given in equation 

(3.7), the quasi 2D transition rate is given by 

 

( ) ( )kk22
2

22
2

2

4
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2

2kk

2

4
2||2

rrrrrr
hh ′′′→ −+=−=Γ
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Here kr and k ′r are 2D wave-vectors representing the momentum of the mobile carrier 

before and after the scattering event. krE and k′rE represent the energies of the mobile carrier 

before and after the scattering event.  

The scattering charges are assumed to be distributed at the interface and inside the oxide 

with a 2D density given by N2D (zi) at depth zi inside the oxide. 
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where, itN is the interface trap density at the interface and ( )if zN is the fixed oxide density at a 

distance zi inside the oxide. Hence, the above transition rate equation can be rewritten as 
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The next step is to evaluate the relaxation time from the transition rate equation. 

Coulomb scattering is elastic in nature, and using the Born approximation, the 2D transport 

relaxation time is given as [19] 
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where, τ is the relaxation time for the scattering of a mobile charge located at a depth z inside the 

semiconductor having the final energy E, caused by Coulombic interaction with a scattering 

charge located at a depth zi inside the oxide. θ is the scattering angle and kr′ is the final state of 

the mobile charge after the scattering event. 

 Substituting the transition rate from the Fermi Golden rule, I get the Coulomb scattering 

rate equation as 
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To get an expression for the Coulomb mobility from the above scattering rate, some 

algebra is involved. As a first step, the integral over the final wave vector kr′ is reformulated in 

terms of the 2D scattering wave vector 2Dqr .



41 

 

Figure 3.2. The quasi-2D scattering wavevector shown as difference between the final and the 
initial wavevectors. Coulomb scattering is elastic. Hence, the magnitudes of the final and initial 
wavevectors remain the same (electron/hole energy does not change). θ is the scattering angle. 
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As shown in Figure 3.2, the 2D scattering wave vector can be written as 

2sin2kkq 22D
θkq D ′=⇒−′= rrr (3.26) 

Here, q2D represents the magnitude of the vector 2Dqr while θ is the scattering angle. 

Writing α = θ/2, I can rewrite equation (3.25) as  
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I then substitute the final wave vector k’ by the energy ( )kr ′E , by writing 
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Hence, I can write,  
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The scattering rate equation then becomes 
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Replacing kr ′E by E, and solving the above integral for dE gives the following energy dependent 

scattering rate equation. 
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By a simple algebraic manipulation, the above integral can be rewritten as 
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The integration in the above term is not solvable analytically. I rewrite the above equation as 
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where, F(z, zi, E) is the energy dependent form factor given by 
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3.3. Depth Dependent Coulomb Scattering Mobility Equation 

 

The scattering rate equation given in (3.33) is energy dependent. The average scattering 

rate τ
1 is calculated using by approximating the average energy as eBTkE = because I have 

a quasi 2D scattering mechanism. Using this approximation, I can write the average scattering 

rate as 

( ) ( )ei
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4
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where, Te is the electron (or hole) temperature, and F is the form factor is given as 
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The Coulomb mobility for a carrier at position z inside the semiconductor due to 

scattering by Coulombic interaction with scattering charges located at  zi inside the oxide is then 

given by 
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The total Coulomb mobility for a mobile carrier at a depth z can be obtained by adding up 

the scattering rates due to scattering charges located at different depths inside the oxide using 

Matheissen’s rule as 
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3.4. Physics of the Coulomb Scattering Mobility Model 

 

The Coulomb scattering mobility model developed above incorporates some interesting 

physics of the inversion layer. The notable points of this model are summarized below. 

 

1. The Coulomb scattering rate is directly proportional to the density of interface trapped 

charge and fixed oxide charge.  

2. Fixed oxide charges located away from the interface into the oxide have less effect on the 

scattering of inversion layer electrons. This is due to the fact that the Coulombic potential 

decreases sharply with distance. It has been effectively represented as a component of the 

form factor (F) in the model presented above. 

3. Mobile charges (electrons) located away from the interface and inside the semiconductor 

are scattered less as compared to those located near the interface. This is also 

incorporated in the form factor (F) of the model above. Thus, the distribution of electrons 

inside the inversion layer plays an important role in determining the total mobility, and 

hence the total current in the device. This distribution is obtained directly from the 

numerical solution of the semiconductor equations. Hence, I do not need to assume any 

particular distribution for the mobile charges inside the device. Thus this model is 

incorporated seamlessly into the drift diffusion device simulation methodology. 

4. Physics of screening of the scattering charges by the inversion layer electrons has been 

included in the mobility model. The model clearly shows that with increase in inversion 

layer charge, the screening increases, causing the total Coulomb mobility to increase. An 

interesting thing that I have seen is that screening affects the electrons lying away from 

the interface more than those lying close to the interface. That is, the Coulomb mobility 

rises much more sharply away from the interface than close to it when the inversion 
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charge density is increased. This can be seen in the simulation results shown in Chapter 

5. An explanation for this can be obtained by looking at the form factor (F) of the 

mobility model. The exponential term in the form factor is dependent on the product of 

the screening wave vector (qsc) and the distance (z-zi). Hence, for very small distances, 

the product is quite small, making the effective screening less. Whereas at larger 

distances, the effective screening is much higher. 

5. Temperature dependence of Coulomb mobility is obtained implicitly from the model. For 

SiC MOSFETs, the effect of temperature on mobility is rather complicated. Three 

different phenomena are temperature dependent, and that too in different ways. The 

interface trap density (Nit) which is a part of the 2D scattering charge density (Equation 

3.22) decreases with increase in temperature, thus causing an increase in Coulomb 

mobility. The screening wave vector (qsc) decreases with increase in temperature 

(Equation 3.3), thus causing a decrease in Coulomb mobility. Also, the mobility term 

itself is directly proportional to temperature, causing the mobility to increase with 

temperature. Thus, a combined effect of these three terms gives the temperature 

dependence of Coulomb Mobility. 

6. In the specific case when it is assumed that the interface trapped charge and the fixed 

oxide charge is located only at the 4H-SiC/SiO2 interface, the depth dependent Coulomb 

mobility may be given as 
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7. In the classic sheet approximation for the inversion layer, it is assumed that the inversion 

layer is an infinitesimally thin sheet of charge located at the interface. For this 

approximation, the Coulomb mobility at the interface can be written as 
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9. For the unscreened Coulomb scattering case, the depth dependent Coulomb mobility is 

reduced to 
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CHAPTER 4 

4. Complete Mobility Model and Simulation Technique for 4H-

SiC MOSFET 
 

In this chapter I describe the complete mobility model used for simulation of a 4H-SiC 

MOSFET. In addition to the Coulomb Scattering Mobility model described in the previous 

chapter, the complete mobility model for 4H-SiC MOSFET includes the bulk mobility model, 

surface phonon mobility model, surface roughness mobility model and high field mobility model. 

I will describe each model and then link them together to form the complete model that is 

implemented in the drift diffusion simulator. In the second part of the chapter I will describe the 

simulation methodology specific for 4H-SiC MOSFETs. I will talk about the interface trap 

density model that has been implemented in the simulator and compare it to experimentally 

observed interface trap density profiles. I will then describe the methodology I have used to 

extract the fixed oxide charge density from experimental data. I have included a summary at the 

end of the chapter to summarize all the information provided so far, and to lead on to the results 

detailed in the next chapter. 
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4.1. Complete Mobility Model 

 

Mobility of mobile charges in the 4H-SiC MOSFET is limited by several scattering 

mechanisms. In order to incorporate the physics of these different scattering mechanisms, each 

scattering mechanism is modeled as a mobility term. All these mobility terms are added using 

Matheissen’s rule to get the total mobility, which is then included in the drift diffusion equations. 

The mobility behaves differently along different crystal axes. Hence the each mobility term is 

defined as a vector with x-mobility and y-mobility components. The x-component is the mobility 

component parallel to the interface direction, whereas the y-component is perpendicular to the 

interface. The total mobility can be divided in two main groups dependent on the parallel field – 

the low field mobility ( )LFµ and the high field mobility ( )HFµ . The total low field mobility is 

made up of bulk mobility ( )Bµ , surface phonon mobility ( )SPµ , surface roughness mobility 

( )SRµ and Coulomb mobility ( )Cµ of mobile carriers. The high field mobility is limited by the 

electron and hole saturation velocity in 4H-SiC inversion layer. By Matheissen’s rule, the total 

mobility can be written as 

 

HFCSRSPBHFLFT µµµµµµµµ
11111111 ++++=+= (4.1)  

 

All the mobilities are derived for electrons. Similar relations can be used for hole mobilities too. 

 

4.1.1. Bulk Mobility 
 

Acoustic phonon scattering and ionized impurity scattering in the bulk are the mechanism 

limiting bulk mobility of charge carriers [28]. I have used the Caughey - Thomas method for 
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modeling bulk mobility [29]. The bulk mobility can be represented as being dependent on the 

doping density and temperature according to the following relation. 
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N
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The following table gives the values for the temperature dependence parameter (ηB), and 

doping dependence parameters (Nref and γB) [11][23]. 

 

Table 4.1. Parameter values used for calculating the bulk mobility in a 4H-SiC MOSFET. 

 4H-SiC 
µmax (cm2/Vs) 1071.0 
µmin (cm2/Vs) 5.0 
ηb 2.4 
Nref (cm-3) 1.9×1017 
γb 0.40 

4.1.2. Surface Phonon Mobility 
 

Using Fermi’s Golden Rule, the surface acoustic phonon scattering rate can be written as 

[20] 

23

2*1
ss

Bac

ac v
TkDm

ρτ h= (4.3) 

where, ρs is the areal mass density of 4H-SiC, vs is the velocity of sound, m* is the density of 

states effective mass and Dac is the acoustic phonon deformation potential for 4H-SiC. Values of 

Dac reported in literature range from 11 eV to 23.8 eV [10][11][27]. 
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The surface acoustic phonon mobility can hence be written as 

TkDmm
vq

m
q

Bacc

ss

c

ac
ac 2*

23ρτµ h== (4.4) 

where, mc is the conductivity effective mass of electrons in 4H-SiC. 

 

The areal mass density ρs is approximately equal to the product of the bulk mass density 

and the average channel thickness. Hence, we obtain the following relation for ρs.

( )QMCLbulkavgbulks ZZZ +== ρρρ (4.5) 

Zavg is the average channel thickness. It can be written as the sum of the classical channel 

thickness (ZCL) and a small quantum correction (ZQM). The classical channel thickness and the 

quantum correction are given by 

⊥
= qE

TkZ B
CL 2

3 (4.6) 

and, 
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Here, ⊥E represents the component of the electric field perpendicular to the mobility component. 

Hence for x-mobility, ⊥E is the field perpendicular to the interface, while for y-mobility, it is the 

field parallel to the interface. ⊥m is the perpendicular effective mass for electrons in 4H-SiC. 

Writing the complete form of the surface phonon mobility, we have 
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The above equation can be reformulated as 

31
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A and B are parameters having the following forms.  

2*

23

2
3

acc

sbulk
Dmm
vA ρh= (4.10) 

312

2*

23

4
9* 



=

⊥qmkDmm
vqB

Bacc

sbulk hh ρ (4.11) 

 

m* is the 2D density of states effective mass, mc is the conductivity effective mass and m⊥ is the 

perpendicular effective mass. They can be derived from the longitudinal (m1, m2) and transverse 

(m3) effective masses for the lower band of 4H SiC [25]. 

 

⊥== mmmm 21
* (4.12) 
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The measured and calculated values of the parameters defining the surface acoustic 

phonon mobility in 4H-SiC MOSFETs are given in Table 4.2. The surface acoustic phonon 

mobility reduces with increase in perpendicular field. Hence, it has more effect at higher gate 

voltages. Also, with increase in temperature, phonon vibrations increase, causing increased 

phonon scattering of mobile charges. Hence, the surface acoustic phonon mobility decreases with 

increase in temperature. 
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Table 4.2. Parameter values for calculating surface phonon mobility in 4H-SiC MOSFETs. 

 4H-SiC 
ρbulk (g/cm3) 3.2 
vs (cm/s) 1.37×106

Dac (eV) 20 
m1, m2, m3 (for electrons) 0.29, 0.58, 0.33 
m*, mc, m⊥ (for electrons) 0.41, 0.39, 0.41 
A (cm/s) 7.8243×107

B ((V/cm)-2/3•oK•cm/s) 9.9240×106

4.1.3. Surface Roughness Mobility 
 

Surface roughness scattering is dependent on the quality of the semiconductor-insulator 

interface. At low temperature and high perpendicular electric field, surface roughness scattering is 

known to strongly degrade surface mobility [28]. It is described as varying inversely with the 

square of the surface charge density [30][31]. The surface roughness scattering rate can be written 

as –  

( ) SRdrs
sSR

fNnq
h

L
q

m 2
22

3

22
||1 +



∆= εµ (4.14) 

where, m|| is the effective mass parallel to the surface, ∆ is the root mean square deviation of the 

roughness, L is the correlation length of the roughness, ns is the surface carrier concentration, Ndr 

is the depletion region areal charge, and fSR is given by 

( ) ( )[ ]∫ −−−= 2/cos1expcos1 22 Lkdf FSR θθθ (4.15) 

Using Gauss’s law to relate the surface charge (ns + Ndr) to the normal electric field, 
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q
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the surface roughness mobility can be written as -  

2
⊥

Γ= E
SR

SRµ (4.17) 

Simulations show that surface roughness scattering becomes important at high gate 

voltages. I have used a value of around 3.7×1012 V/s for ΓSR. This is much lower than the values 

used for Si MOSFETs (> 1014 V/s). It suggests that 4H-SiC MOSFETs have a much rougher 

surface than Si MOSFETs. Better fabrication technique would make the surface much smoother 

giving reduction in surface roughness scattering. 

 

4.1.4. Coulomb Scattering Mobility 
 

The development of the Coulomb Scattering Mobility model for 4H-SiC MOSFETs has 

been described in Chapter 3. I would just like to note here that the Coulomb Scattering mobility is 

inversely proportional to the density of occupied traps and the fixed oxide charge at the interface. 

I would also like to note that the Coulomb scattering mobility rises sharply with increasing 

distance from the interface, and that up till a certain high temperature, it rises with rise in 

temperature. 

 

4.1.5. High Field Mobility 
 

The effect of high lateral field on the scattering of charged carriers in the inversion layer 

is modeled by considering a high field mobility component. At high lateral fields, the velocity of 

the charged carriers in the inversion layer approaches the saturation velocity ( )satv . Hence, it 
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becomes independent of the lateral field. Considering this, the high field mobility can be 

expressed as [15] 

||E
vsat

HF =µ (4.18) 

The saturation velocity depends on various parameters. Essentially, it can be thought as 

the maximum velocity a mobile carrier can reach in the inversion layer. As the carriers are 

accelerated by the lateral field, they gain energy. But due to scattering in the inversion layer near 

the interface, their energy cannot exceed beyond a certain limit. Hence, their maximum velocities 

are limited by the amount of scattering they experience. So, the saturation velocity of carriers 

near the interface will be different from those away from the interface, as the amount of scattering 

is different in both cases. The variation of saturation velocity with depth can be extracted by 

Monte Carlo simulations of a mobile charge traveling inside the semiconductor at different depths 

from the interface. I have not yet done this. I use an average saturation velocity for all carriers. 

This saturation velocity though is allowed to change with change in gate voltage, because 

scattering rates change with change in gate voltage. But this method is not without its own 

drawbacks. With increase in gate voltage, up to a certain point, the total scattering increases. 

Hence, the average saturation velocity should decrease. But after a certain gate voltage, screening 

of the occupied interface traps causes a drop in the amount of Coulomb scattering taking place. 

Hence, the saturation velocity at the interface should increase. But at the same time, with increase 

in gate voltage, perpendicular electric field increases, leading to increase in surface acoustic 

phonon scattering and surface roughness scattering. These mechanisms will try to reduce the 

saturation velocity. I have not yet come up with a model that takes into effect all these 

mechanisms and calculate the proper average saturation velocity as a function of gate voltage. I 

have used different values of the average saturation velocity which would give me proper IV 

characteristics at high fields (high drain voltages), that fit the experimentally measured values. 
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4.1.6. Total Mobility 
 

The complete mobility of charged carriers inside the semiconductor is given by adding up 

the effects of low field and high field scattering mechanisms by Matheissen’s rule. This total 

mobility is directly incorporated in the device simulator as part of the electron and hole current 

continuity equations. The mobility model is temperature dependent. Temperature dependence is 

evident in the models for bulk mobility, surface acoustic phonon mobility and the Coulomb 

scattering mobility. It is seen that for 4H-SiC MOSFETs, at low gate fields, the total surface 

mobility increases with increase in temperature. This is due to the fact that the dominant mobility 

at low gate fields, which is the Coulomb Scattering mobility, shows an increase with increase in 

temperature.  

 

4.2. Simulation Technique and Application to 4H-SiC MOSFETs 

 

In this section, I will discuss two aspects related to simulation of 4H-SiC MOSFET 

devices. First, I will present a strategy to evaluate the occupied interface trapped charge at the 

SiC-SiO2 interface from an energy dependent model for the density of states of interface traps. I 

will then talk about how I identify and include another very important parameter for 4H-SiC 

MOSFETs – the fixed oxide charge density. 

 

4.2.1.  Interface Trap Model 
Experimental measurements of interface trap density of states for 4H SiC have shown a 

flat distribution of traps in the middle of the bandgap and an exponential increase near the band 

edges [5][6][32][33][34]. I use a similar distribution function for the interface trap density of 
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states for 4H-SiC MOSFETs. I extract the values for midgap and band-edge values of the density 

of states by comparing simulated IV curves to experimental data.  

For the traps lying in the upper half of the bandgap, the density of states can be described 

as –  

( ) 
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 −−+=
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A
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EEDDED
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where, EC is the energy at the conduction band edge. Similarly, for the traps lying in the bottom 

half of the bandgap, the energy dependent density of states can be written as –  
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EEDDED
edgemid σexp  (4.20) 

where, EV represents the energy at the valence band edge. 

 

miditD and 
edgeitD are empirical quantities that are determined by comparing the simulated 

IV curves to experimental data. Some restrictions have been imposed on the values for these 

quantities. The value for 
miditD is not allowed to be less than the minimum mid-gap density of 

states values reported in literature, and 
edgeitD is not allowed to exceed the maximum reported 

band-edge density of states values. 
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Figure 4.1. Interface trap density of states for 4H-SiC MOSFET. 
edgeitD = 9.5×1013 cm-2eV-1 

miditD = 4.0×1011 cm-2eV-1 and itσ = 0.0515 
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The occupancy of the traps depends on the energy distribution of inversion layer mobile 

charges. I use Fermi statistics to calculate the density of occupied interface traps. My model uses 

the mid-gap energy as the neutrality point ( )


 += 2
VC

neutral
EEE . Traps above the neutrality 

point are acceptor-type, while those below the neutrality point are donor-type. Electrons can fill 

the traps which have energies between the neutrality point (mid-gap) level and the electron Fermi 

energy level; whereas, holes can fill the traps which have energies between the hole Fermi level 

and the neutrality point (mid-gap) level. Hence, according to Fermi statistics, I can write the 

probability function for the occupancy of the traps lying above the mid-gap as –  

( )


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11
1 (4.21) 

Instead of using the Fermi energy ( n
FE ), I use the electron concentration at points closest 

to the interface to write the probability function. Writing the electron concentration (n) in terms of 

the Fermi energy, I have –  


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Substituting for the electron Fermi energy in (4.21), the probability density function for 

occupancy of the acceptor-type traps can be written as -  
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where, Nc is the effective conduction band density of states for 4H-SiC, n is the density of 

electrons close to the interface, and Ec is the conduction band minimum at the temperature T.
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Similarly, the probability distribution function for occupancy of donor-type traps can be 

written as 

( )




 −+

=
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B
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n

exp2
11
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where, Nv is the effective valence band density of states for 4H-SiC, p is the density of electrons 

close to the interface, and EV is the conduction band minimum at the temperature T.

The density of occupied acceptor-type interface traps is given by  
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Similarly, the density of occupied donor-type interface traps is calculated as -   

( ) ( )∫=
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The reason for using the electron and hole concentrations to calculate the occupied trap 

density is that the drift diffusion simulator directly calculates these values. Hence, the dependence 

of the occupancy of interface traps on the electron and hole concentration in the device is 

achieved implicitly. With increase in gate voltage, the surface electron concentration increases for 

n-channel a 4H-SiC MOSFET. Hence, more of the interface traps near the conduction band edge 

are occupied. Figures 4.2 and 4.3 show the occupancy of the interface traps at two different gate 

voltages. It can be clearly seen that at higher gate voltage, the probability function describing the 

occupancy is shifted more towards the conduction band edge. 
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Figure 4.2. Fermi distribution function and the density of occupied acceptor-type interface traps 
at a low gate voltage of -2V. The electron concentration at the surface is quite high, indicating 
that the electron Fermi level is closer to the conduction band edge. The complete curve for the 
available energy states is not shown. It actually stretches up till 9.5×1013 cm-2eV-1 as shown in 
Figure 4.1. 

edgeitD = 9.5×1013 cm-2eV-1 
miditD = 4.0×1011 cm-2eV-1 and itσ = 0.0515 
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Figure 4.3. Fermi distribution function and the density of occupied acceptor-type interface traps 
at a gate voltage of 2V. The electron concentration at the surface very high,  indicating that the 
electron Fermi level is closer to the conduction band edge. Compare the Fermi distribution 
function curve to the one in Figure 4.2. It is clear that the curve has shifted towards the 
conduction band edge, indicating that the electron Fermi energy level has shifted towards the 
conduction band edge. The complete curve for the available energy states is not shown. It actually 
stretches up till 9.5×1013 cm-2eV-1 as shown in Figure 4.1. 

edgeitD = 9.5×1013 cm-2eV-1 

miditD = 4.0×1011 cm-2eV-1 and itσ = 0.0515 
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Temperature dependence of the occupied interface trap density is also obtained from the 

probability functions. With increase in temperature, the Fermi distribution function curves shift 

away from the band edges. So, the traps lying closer to the band edges remain less filled. Hence, 

the total number of occupied traps decreases. Thus, with increase in temperature, the occupied 

trap density decreases. Figure 4.4 shows the comparison between the occupied interface trap 

densities at two different temperatures, and at a particular gate voltage. At lower temperatures, 

the occupation of traps, which is shown by the dotted line, is more towards the conduction band 

edge, as compared to the high temperature case. 
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Figure 4.4. Occupation of acceptor-type interface traps by electrons at two different temperatures. 
As compared to room temperature, at 100oC, the Fermi distribution function curve is shifted away 
from the conduction band edge. Hence, fewer electrons fill up the interface states ,causing the 
occupied interface trap density to decrease.  The available interface traps density of states is not 
shown in the figure. It is the same as shown in Figure 4.1. 
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4.2.2. Fixed Oxide Charge Density 
Fixed oxide charge density in a MOSFET can be estimated from threshold voltage 

variation with temperature. Threshold voltage in a MOSFET is dependent on the gate-

semiconductor work function difference, the bulk built in potential, the depletion charge density, 

the interface trapped charge density, the inversion layer charge density, and the fixed oxide 

charge density. All the above mentioned quantities, except for the fixed oxide charge density, 

change with change in temperature. Using experimentally measured threshold voltages at 

different temperatures, it is possible to extract the fixed charge for a given MOSFET. It is seen in 

simulations (Figure 5.5) and experiments [4] that the inversion charge is very small at threshold. 

Hence, assuming that there is no inversion charge at threshold and that the band bending at the 

surface is twice the bulk built-in potential, I can write the equation for temperature dependent 

threshold voltage as  

 

( ) ( ) ( ) ( )( ) ( )( )fit
oxox

BA
BMSt NTNC

q
C

TqNTTTV −+++Φ=
− ψψ 222 (4.27) 

 

ΦMS is the work function difference between the polysilicon gate and 4H-SiC substrate, ψB is the 

bulk built in potential, −
AN is the bulk doping density, Cox is the oxide capacitance, Nit is the 

temperature dependent occupied interface trap density at threshold and Nf is the fixed oxide 

charge density. 

I define a theoretical threshold voltage (VtTHEO) as the threshold voltage calculated by 

excluding the effect of fixed charge and occupied interface trap charge. 
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The values for the theoretical threshold voltage are calculated, whereas, the values for the 

actual threshold voltage are taken from experiments. I have used experimental data from 

measurements done at the Army Research Lab (ARL), on a 200µm×200µm 4H-SiC MOSFET 

manufactured by Cree. Inc. The oxide thickness and the doping density values have been 

provided by Cree and are as listed in Table 4.1. Based on these values, the bulk built-in potential, 

and the depletion charge densities calculated at threshold, are also listed in Table 4.1. Figure 4.3 

shows the measured threshold voltage and the theoretical threshold voltage as function of 

temperature. 

Comparing the two equations for temperature dependent threshold voltage, I can write 

the difference between the fixed charge and temperature dependent occupied trap density as  

 

( ) ( )( )TVTVq
CTNN tt

ox
itf THEO

−=− )(  (4.29) 

 

As discussed in the previous section, Nit decreases with increase in temperature while Nf

remains constant. Plotting Nf – Nit (T) as a function of temperature (Fig. 4.4), we can estimate the 

value of Nf as the maximum of the curve (where Nit is the minimum). The estimated value of Nf

was 1.54×1012 cm-2. Actually, at threshold, there is going to be some inversion layer charge also. 

Hence Nf will be a little larger than the calculated value.  
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Figure 4.5. Measured threshold voltage and threshold voltage calculated by excluding the effect 
of fixed charge density and occupied interface trap density, at different temperatures. The 
threshold voltages have been measured (or calculated) for a 200µm×200µm 4H-SiC MOSFET 
with a polysilicon gate, oxide thickness of 600Å, and a p-type epi-layer doping of 5×1015 cm-3.
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Figure 4.6. Plot of the difference between fixed oxide charge density and the occupied interface 
trap density as a function of temperature, obtained from threshold voltage measurements. By 
extrapolating the curve joining the data points, it is seen that the difference reaches a maximum 
value of 1.15×1012 cm-2. This can be interpreted as the point at which the occupied interface trap 
density reaches its minimum value. I take this value to be the value for the fixed oxide charge 
density.  
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4.2.3. 4H-SiC MOSFET Parameter Extraction Scheme 
 

The mobility models described in Chapters 3 and 4, the formulation for the occupied 

interface trap density evaluation along with the fixed oxide charge values found analytically are 

input to the drift diffusion simulator described in Chapter 2. I am able to extract the electrostatic 

potential, electron concentration, hole concentration, details of current flow, electric fields, and 

mobility, inside the 4H-SiC MOSFET from the simulator. I also get terminal IV characteristics, 

which are then compared to experimental data. 

 

In order to extract material properties from the simulator, I fit the low field and high field 

IV curves to experimental data. I have used experimental measurements made on 4H-SiC devices 

at ARL. I first try to fit the low field IV curves. I keep my drain voltage as 0.25 V and vary the 

gate voltage from around -4V to 15V. Various scattering mechanisms play the dominant roles at 

various gate voltages. At low gate voltages, in the subthreshold region, the total mobility is 

limited by Coulomb scattering. The midgap value of the interface trap density of states is 

obtained by fitting low field Id-Vg curves in subthreshold to the experimental data. The interface 

traps lying close to the midgap are filled when the device is operating in the subthreshold region. 

Ideally, the occupancy of traps should be much less when the device is operating in the 

subthreshold region. But, owing to the very high density of states of interface traps in 4H-SiC, I 

see significant occupation of traps even when the device is operating in the subthreshold region. 

So, it is not easy to separate out the fixed charge and the occupied interface trapped charge even 

in subthreshold. I use the fixed charge density value calculated in the above section with a small 

correction for the inversion charge density. As gate voltage increases, the traps lying near the 

conduction band edge begin to fill up. Hence, the near threshold regions of the Id-Vg curves give 

me the estimate for the conduction band edge density of states for interface traps.  
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With further increase in gate voltage, the inversion layer charge density begins to 

increase. This causes screening of the occupied interface traps. Hence, the Coulomb mobility 

begins to rise, and other scattering mechanisms begin to dominate. At higher gate voltages, the 

surface roughness mobility becomes the dominant scattering mechanism, and hence this region of 

the Id-Vg curves gives me an estimate for the surface roughness parameter ( )SRΓ .

Simulations and fitting of high lateral field IV curves (Id-Vd characteristics) gives me the 

estimate for the electron saturation velocity ( )satv . It was required to change the saturation 

velocity for fitting Id-Vd curves at different gate voltages. This suggests that the saturation 

velocity for electrons in the inversion layer is not constant, but changes with change in gate 

voltage. 

 

All the simulations have been done for a 200µm×200µm 4H-SiC MOSFET. The device 

was fabricated at CREE Inc. and all the measurements were done at ARL. The MOSFET has a 

3µm thick epi-layer which is doped at around 5×1015 cm-3. It has polysilicon material as the gate 

contact. The oxide is thermally grown and has a thickness of around 600Å. 
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CHAPTER 5 

5. Simulation Results and Interpretations 
 

In this chapter, I have described in detail the various simulations I have carried out and 

my interpretations of the results obtained. I start with describing the room temperature low field 

Id-Vg and high field Id-Vd simulations that fit the experimentally measured values. I then discuss 

details of the physics of the interface and the inversion layer that I can extract from my 

simulations. I describe the role played by interface traps at the SiC – SiO2 interface in 4H-SiC in 

degrading mobility and lowering the mobile charge density in the inversion layer. I show detailed 

comparisons of various mobilities in the inversion layer and isolate the prominent mobility 

degrading mechanisms at room temperature. The simulations show that Coulomb scattering by 

occupied interface traps and fixed oxide charges is the dominant mobility degrading mechanism 

for 4H-SiC MOSFETs. The simulations also show that at higher gate voltages, surface mobility is 

degraded more due to surface roughness scattering than Coulomb scattering. I also discuss the 

effect of screening of the trapped charges and the fixed oxide charges, on Coulomb mobility near 

the surface. At the end, I describe my simulations predicting the performance enhancement of the 

4H-SiC MOSFET that can be achieved by reduction in the interface trap densities at the band 

edges, and/or the reduction in surface roughness of the SiC – SiO2 interface. 
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5.1. Room Temperature Fits to Experimental Data 

 

Figures 5.1 to 5.3 show low field (subthreshold and linear region), and high field IV 

curves obtained by simulation of a 200µm×200µm 4H-SiC MOSFET at room temperature. The 

physical description of the MOSFET is given in Chapter 4. Very good agreement of the simulated 

curves with the experimental data has been achieved. Various material parameters have been used 

to get the simulations to fit to experimental data. These parameters and their effect on various 

physical processes have been detailed in Chapters 3 and 4. By comparing the low field Id-Vg 

simulations to experimental data, I can get estimates for the interface trap density of states profile 

for the MOSFET. The estimated interface trap density of states profile is shown in Figure 5.4. 

This result is consistent with a few experimentally measured values given in literature 

[5][6][32][33][34]. I am also able to get the value of the surface roughness parameter by fitting 

the high gate voltage part of the Id-Vg curve to experimental data. The surface roughness 

parameter value that I obtain is 3.7×1012 V/s. I believe that I might be overestimating the surface 

roughness scattering in my simulations. The reason for this is that I have implemented screening 

for Coulomb scattering, but not for surface roughness scattering. Screening reduces the effect of 

scattering at voltages where the inversion charge density is high. I intend to develop a more 

detailed model for surface roughness in the future. I have described a method for extracting the 

fixed oxide charge density in Chapter 4. For these simulations, I have used a fixed oxide charge 

density of 1.3×1012 cm-2, which is slightly more than expected from the calculations shown in 

Chapter 4. This is in perfect accordance with the calculations, wherein I had mentioned that, as 

the inversion charge density is not going to be zero at threshold, the fixed oxide charge density 

will be slightly higher than calculated. At room temperature, the threshold voltage of this 

MOSFET is about 0.83V. 
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Figure 5.1. Drain current versus gate-source voltage on a logarithmic scale, for the 
200µm×200µm 4H-SiC MOSFET at room temperature, and a drain-source voltage of 0.25V. 
Agreement between simulation and experiment is shown in the subthreshold region over several 
orders of magnitude.  
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Figure 5.2. Drain current versus gate-source voltage on a linear scale, for a 200µm×200µm 4H-
SiC MOSFET at room temperature, and a drain-source voltage of 0.25V. Agreement is achieved 
between simulation and experiment in linear region of operation. 
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Figure 5.3. Drain current versus drain-source voltage for a 200µm×200µm 4H-SiC MOSFET at 
room temperature. Agreement is shown between simulation and experiment in the high field 
region, for several different gate voltages. 
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Figure 5.4. Interface trap density of states profile for a 4H-SiC MOSFET. The various parameters 
have been determined by comparing and fitting simulated room temperature Id-Vg curve to 
experimental data. The best fit was obtained for Ditmid = 4.0×1011 cm-2eV-1,
Ditedge = 9.5×1013 cm-2eV-1, and σit = 0.0515 eV. The fixed oxide charge density was determined 
to be 1.30×1012 cm-2.
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5.2. Room Temperature Physics of 4H-SiC MOSFETs 

 

In this section, I will describe the physics inside a 4H-SiC MOSFET that can be inferred 

from my simulations. In all the plots, the various physical quantities are described at the center of 

the channel. 

 

5.2.1. Interface Traps in 4H-SiC MOSFETs 
 

The interface traps in 4H-SiC MOSFETs affect the device performance in two ways. 

Firstly, because of the excessive high density of traps, the density of occupied traps is much 

higher than the density of the mobile inversion charge at room temperature. Figure 5.5 shows the 

comparison of the occupied interface trap density and the mobile inversion charge density at 

observed at the center of the channel of the simulated MOSFET at room temperature. The drain – 

source voltage is kept at 0.25V. As can be clearly seen, the very high density of states of the 

interface traps has resulted in a much higher occupied interface trap density as compared to the 

inversion layer mobile charge density. Thus, the presence of interface traps significantly lowers 

the mobile charge density available for conduction, and thereby reducing the total current. It also 

gives a positive shift in the threshold voltage. 

 

The other significant effect of the extremely large number of occupied interface traps, 

and the fixed oxide charge, is the severe degradation of the surface mobility in 4H-SiC MOSFETs 

due to Coulomb Scattering. The fixed oxide charge is assumed to be located at the interface. 

Usually it is located inside the oxide up to a depth of around 30Å. Figure 5.6 shows the Coulomb 

mobility as a function of depth inside the semiconductor at different gate voltages. It can be 

clearly seen that Coulomb scattering mobility is very low at the surface, but rises as we go deeper 
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inside the device. Due to the screening of the scattering charges by the mobile charges, the 

Coulomb scattering reduces sharply with depth away from the interface. Hence, the Coulomb 

mobility curves for higher gate voltages show a much steeper rise. Thus it can be inferred that 

Coulomb scattering of mobile charges by occupied interface traps and fixed oxide charge is 

significant only very close to the interface. It is the dominant mobility degradation mechanism 

close to the interface. 
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Figure 5.5. Comparison of the inversion charge density (Ninv) and the occupied interface trap 
density (Nit) at different gate voltages, at room temperature. The very high density of occupied 
traps reduces the number of free inversion layer carriers, and hence causes current degradation. 
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Figure 5.6. Coulomb scattering mobility ( )Cµ plotted as a function of depth inside the 
semiconductor, at different gate voltages. Notice that the mobility is extremely low (~20 cm2/Vs) 
at the surface, but rises quickly with depth. At higher gate voltages, due to the large number of 
inversion layer charges, screening of the scattering charges becomes strong, causing the Coulomb 
mobility to rise more sharply. 
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5.2.2. Surface Roughness  
 

The other significant mobility degradation mechanism that is seen for 4H-SiC MOSFETs, 

is surface roughness. Figure 5.7 shows the surface roughness mobility curves as a function of 

depth inside the device, at different gate voltages. According to the surface roughness mobility 

model, the surface roughness scattering depends on the strength of the perpendicular electric 

field. As can be seen from the figure, at low gate voltages, the surface roughness mobility is quite 

high, and does not cause any degradation in the low field mobility. But at higher gate voltages, 

the perpendicular electric field becomes strong, leading to an increase in surface roughness 

scattering. In fact, at large gate voltages, the surface roughness scattering becomes more 

dominant than the Coulomb scattering, and it controls the total low field mobility. 
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Figure 5.7. Surface roughness mobility ( )SRµ plotted as a function of depth inside the 
semiconductor. ( )SRµ is lowest at the interface, where the perpendicular field is the strongest. 
With increase in gate voltage, the perpendicular field increases, causing a decrease in the surface 
roughness mobility. The surface roughness factor was obtained as ΓSR = 3.7×1012 V/s from Id-Vg

simulation fits to experimental data. 



83 

5.2.3. Total Low Field Mobility 
 

Figure 5.8 shows the comparison between different low field mobility mechanisms at a 

gate voltage of 6V. The Coulomb mobility and the Surface Roughness mobility are the two main 

mobility limiting mechanisms at this gate voltage. The bulk mobility does not play much of a role 

in limiting the total mobility near the surface. The total mobility approaches the bulk mobility 

value much away from the surface. The surface phonon mobility also does not play a role in 

limiting low field mobility. 

 

In Figure 5.9, I show the total low field mobility varying with depth at different gate 

voltages. Owing to the very low Coulomb mobility at the surface, the total low field mobility at 

the surface is very less. At 2Å away from the interface, the total low field mobility is around      

20 cm2/Vs for gate voltages ranging from -2V to 14V. It rises quickly some distance away from 

the interface because screening starts playing a big role, causing the Coulomb scattering to reduce 

drastically. At Vg = -2V, there are very few inversion layer electrons, and hence, the screening is 

the least. Hence, the total mobility does not rise very quickly as we move away from the 

interface. 
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Figure 5.8. Figure showing the comparison between the various low field mobility components at 
a gate-source voltage of 6V, and at room temperature. The total low field mobility near the 
surface is limited by the Coulomb mobility, whereas the surface roughness mobility becomes 
dominant at a depth of around 3 nm. The total mobility reaches the bulk mobility value much 
deeper inside the semiconductor (> 20 nm) 



85 

 

0  2 4 6 8 10 12
0

50

100

150

200

250

300

350

Depth (nm)

T
o
ta
l L
o
w
 F
ie
ld
 M
o
b
ili
ty
 (c

m
2/V
s
)

V
GS

 = -2V

V
GS

 = 0V

V
GS

 = 2V

V
GS

 = 6V

VGS = 8V

T = 300oK

Figure 5.9. Total low field mobility ( )LFµ as a function of depth, at the center of the channel. 
Gate-source voltages range from -2V to 8V. The drain-source voltage is 0.25V, and the 
simulation is done for room temperature. The low values of the total mobility near the surface are 
due to large amount of Coulomb scattering close to the interface. 
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5.2.4. Electron Concentration and Current Density 
 

The current flowing at any depth inside the semiconductor depends on the product of the 

total mobility, and the concentration of mobile charges at that depth. I have shown that the 

mobility at the surface is very low, but it rises sharply some distance away from the interface. In 

Figure 5.10, I show the variation of electron concentration with depth at different gate voltages. 

With increase in gate voltage, the electron concentration of the 4H-SiC N-MOSFET increases. 

The electrons are pulled near to the interface by the gate field. Hence, at any gate voltage, the 

electron concentration is the maximum nearest to the interface, and decreases exponentially with 

depth inside the semiconductor. This is the proper classical electron concentration variation with 

depth curve. Electron concentration reaches a value of 1×1019 cm-3 at the interface, at a gate 

voltage of 14 V. 

 

We might be persuaded to think that, as the electron concentration is the highest at the 

interface, the maximum current will be flowing at the interface. But as shown in Figure 5.11 this 

is actually not the case. Because of the excessively high scattering and very low mobility at the 

interface, the peak of the current density curve is seen some distance away from the interface. 

Hence, in 4H-SiC MOSFETs, the maximum current does not flow at the interface, but some 

distance away from it, inside the semiconductor. This understanding of the current flow in a 4H-

SiC MOSFET has been achieved by the implementation of the depth dependent Coulomb 

Scattering mobility model, and the extremely fine mesh spacing inside the device structure. Also, 

from the same current density curve, we can see that the peak of the curve shifts towards the 

surface with increase in gate voltage. This is seen because with increase in gate voltage, the 

electrons are pulled closer to the interface. 
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Figure 5.12 shows an average depth of the inversion layer as a function of gate voltage. 

The average depth of the inversion layer is calculated using Equation 3.5. This curve shows that 

the average depth of the inversion layer decreases with increase in gate voltage; which is another 

way of saying that the electrons are pulled closer to the interface with increasing gate voltage. 

The amount of screening is inversely proportional to the average depth of the inversion layer and 

directly proportional to the average density of the inversion layer. With increase in gate voltage, 

as the density of the inversion layer increases (Figure 5.5), and its average depth decreases 

(Figure 5.12), the amount of screening will rise rather quickly.   
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Figure 5.10. Variation of electron concentration with depth, at the center of the channel, shown 
for different gate-source voltages and at room temperature. The curves follow the classical 
electron distribution curve, showing the maximum concentration at the interface and an 
exponential decrease with depth inside the semiconductor. 
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Figure 5.11. Current density variation with depth for a 4H-SiC MOSFET at room temperature. 
Because of the extremely low mobility near the surface, the maximum current does not flow at 
the surface, but some distance below it. For a gate-source voltage of 14V, when the MOSFET is 
in deep inversion, the peak of the current density is approximately 2nm below the interface. The 
current is spread out over a larger depth at low gate-source voltages. The peak shifts towards the 
interface with increase in gate-source voltage. 
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Figure 5.12. Average depth of the inversion layer (Zavg) plotted as a function of gate-source 
voltage, at room temperature. With increase in gate-source voltage, the electrons are pulled closer 
to the interface, and hence the average depth of the inversion layer decreases. 
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5.2.5. Comparing Coulomb Mobility and Surface Roughness Mobility 
 

Figures 5.13 and 5.14 show comparisons between the two dominant mobility degradation 

mechanisms – Coulomb Scattering, and Surface Roughness Scattering. The mobility at the center 

of the channel is plotted as a function of depth away from the interface towards the bulk. As 

shown in Figure 5.13, at a low gate voltage of 2V, the surface roughness mobility is very high 

and does not play a role in limiting the total mobility. The Coulomb mobility is low and is 

responsible for the low total mobility at the interface. Also, because of the low inversion charge 

density, the screening is also less here. Hence, the Coulomb mobility remains low for a much 

larger depth inside the semiconductor. In fact, as seen in the figure, for the entire depth over 

which the current is spread, the Coulomb mobility is the dominant mobility limiting mechanism. 

The total mobility curve follows the Coulomb mobility curve. 

 

Now consider the comparison of Figure 5.14. The figure shows mobility curves at a gate 

voltage of 12 V. Here too, at the surface, the Coulomb mobility is the lowest. But now, there is a 

huge amount of screening due to the large inversion layer density. Hence, the Coulomb mobility 

shoots up very quickly, over a very small distance away from the interface. As the surface field is 

very high, the surface roughness mobility now dominates over much of the depth in which the 

current is spread. The total mobility curve now follows the surface roughness mobility curve. 

Hence, we can say that, even though the surface mobility is still controlled by Coulombic 

scattering due to the occupied interface traps, the actual current limiting mobility is controlled by 

the amount of surface roughness. This conclusion might not be entirely valid because surface 

roughness scattering is also screened; but I have not implemented a screened surface roughness 

scattering mobility model in my simulator. 
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Figure 5.13.  Comparison between Coulomb scattering mobility ( )Cµ and surface roughness 
mobility ( )SRµ at a gate-source voltage of 2V. Coulomb mobility dominates the total low field 
mobility for most of the depth over which the current is spread. Coulomb scattering mobility 
curve crosses the surface roughness mobility curve at a depth of around 5nm. (Note: The scales 
for mobilities and the current density are the same, but their units differ.) 
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Figure 5.14. Comparison between Coulomb scattering mobility ( )Cµ and surface roughness 
mobility ( )SRµ at a gate-source voltage of 12V. Coulomb mobility dominates the total low field 
mobility only near the surface. Beyond a depth of around 1nm, the surface roughness mobility 
dominates the total low field mobility for most of the distance over which the current is spread. 
(Note: The scales for mobilities and the current density are the same, but their units differ.) 
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5.2.6. Effect of Screening 
 

Screening of the occupied interface traps and the fixed oxide charge by inversion layer 

mobile charges reduces the effect of Coulomb Scattering. The screened Coulomb potential falls 

of as an exponential, and hence its effect is limited to very small distances. In all the results 

shown above, the simulations include this effect of screening. Figure 5.15 shows the low field   

Id-Vg characteristics of the same device, with the same interface trap density profile and with all 

the other parameters, but without the screening effect. It is very clearly seen that the current at 

higher gate voltages is much lower than the experimental value (and the previously shown 

simulated values). Thus screening plays an important role in reducing the Coulomb scattering, 

and thereby improving the device performance. 

 

As shown in Figure 5.6, because of screening, the Coulomb mobility tends to increase 

with increase in gate voltage, even though the number of occupied traps also increases. This 

effect is especially noticeable some distance away from the interface. But, if the screening 

phenomenon is not considered, then we actually see the Coulomb mobility decreasing with 

increasing gate voltage. This is shown in Figure 5.16. Also notice how the Coulomb mobility 

does not rise as rapidly as in the case where screening was considered. 
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Figure 5.15. Low field drain current versus gate-source voltage characteristics for the two cases 
of screened and unscreened Coulomb scattering mobility models. Screening of the charged 
scattering centers by inversion layer electrons causes a reduction in Coulomb scattering at higher 
gate-source voltages, causing the current to rise. 
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Figure 5.16. Coulomb scattering mobility plotted as a function of depth inside the semiconductor 
for the case of unscreened Coulomb scattering. With increase in gate-source voltage, the density 
of occupied traps increases, causing reduction in Coulomb mobility. This is contrary to the result 
(Figure 5.6) when screening of these traps by the inversion layer electrons is taken into account. 
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5.3. Device Performance Predictions based on Simulations 

 

In this section, I describe the predictions of device performance that I can make on the 

basis of my drift diffusion simulations and mobility models. I will focus on the two main 

performance degrading mechanisms that I have talked about, viz. Coulomb Scattering due to 

occupied interface traps, and Surface Roughness Scattering. 

 

5.3.1. Reduction of the Occupied Interface Trap Density 
 

As I have described earlier, the extremely high density of occupied interface traps in 4H-

SiC is due to the sharp exponential rise in the interface state density of states near the conduction 

band and valence band edges. So, if the density of states of the traps near the band edges is 

reduced, then device performance should improve. There have been various discussions about 

fabrication methods which give a reduction in the band edge density of states of interface traps in 

SiC. Annealing in Nitrous Oxide (NO) is one way in which the density of interface traps near the 

band edges has been reduced. I now show simulations which predict how a 4H-SiC MOSFET 

device will perform if the interface trap density of states is reduced by factors of 10 and 100. 

 

As has been discussed above, the interface traps lower the amount of inversion charge 

present in the device at any given gate voltage, and also cause mobility degradation at the surface 

due to Coulomb scattering of mobile charges. Figure 5.17 shows a comparison of the inversion 

layer charge densities when the interface trap density of states at the band edge is reduced by a 

factor of 10. Note that in the real case where my simulations have matched the experimental data, 

the inversion layer charge density is always less than the occupied interface trap density at all 

gate voltages. But when I reduce the density of states at the band edge by a factor of 10, the 
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inversion layer charge density rises sharply and becomes more than the occupied interface trap 

density at a gate voltage of around 2V. Hence, there are a lot more mobile charges available for 

conduction. 

 

Figure 5.18 shows the Coulomb mobility as a function of depth, at different gate 

voltages, after a 10 fold reduction in trap density at the band edge. Notice how the mobility at the 

surface has increased as compared to Figure 5.6. 

 

Figure 5.19 shows the current density variation with depth, at different gate voltages. 

Owing to the increased surface mobility as a result of the reduction in occupied states, the current 

density at each gate voltage has increased. Also, the peak of the current density is now shifted 

closer to the interface. 

 

A combination the increased inversion charge density and increased surface mobility will 

give an increase in the current flowing through the device. Figure 5.20 shows the Id-Vg curves of 

the 4H-SiC MOSFET, for the cases of unchanged, factor 10 reduced, and factor 100 reduced, 

interface trap density of states. The increase in current is significant when the interface trap 

density is reduced by a factor of 10. But, the increase in current is not significant when they are 

reduced further. The reason for this is that there is not much change in the surface mobility now, 

as the dominant mobility degradation mechanism is the surface roughness scattering. Also notice 

that the improvement in current is more marked in the low gate voltage region of the curve. This 

is because at higher gate voltages, surface roughness mobility is comparable to Coulomb 

mobility. Hence, at higher gate voltages, the total mobility is not changed much, when the 

interface trap density of states is reduced. 
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Figure 5.17. Comparison of the inversion charge density (Ninv) and the occupied interface trap 
density (Nit) at different gate voltages, for two different interface trap density of states profiles. 
The original interface trap density of states profile is as shown in Figure 5.4. The other curves are 
for the case when Ditedge is reduced by a factor of 10 to 9.5×1012 cm-2eV-1. Inversion charge 
density actually becomes more than the occupied trap density in the new reduced density of states 
case. Compare with Figure 5.5. 
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Figure 5.18. Coulomb scattering mobility ( )Cµ plotted as a function of depth inside the 
semiconductor, at different gate voltages, for the case of reduced interface trap densities. Density 
of interface traps at the band edge has been reduced by a factor of 10 to Ditedge=9.5×1012 cm-2eV-1.
Compare the minimum value of the Coulomb mobility at the surface (~ 200 cm2/Vs) at a gate-
source voltage of 14V, to the value of around 20 cm2/Vs shown in Figure 5.6. 
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Figure 5.19. Current density variation with depth at room temperature for a 4H-SiC MOSFET 
with reduced density of states of the interface traps. Density of interface traps at the band edge 
has been reduced by a factor of 10 to Ditedge=9.5×1012 cm-2eV-1. Compare the curves to the ones 
shown in Figure 5.11. Owing to the reduction in occupied traps at higher gate-source voltages, the 
peak current density has increased at higher gate voltages, and has also shifted closer to the 
interface. 
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Figure 5.20. Drain current versus gate-source voltage for a 4H-SiC MOSET at room temperature, 
and drain-source voltage of 0.25V. The three curves correspond to different density of states of 
the interface traps. The curve fitting the experimental data has a band edge density of states value 
of 9.5×1013 cm-2eV-1, while the other two curves have the Ditedge values as 9.5×1012 cm-2eV-1and 
9.5×1011 cm-2eV-1. Notice how the current increases a lot for the first 10-fold reduction in 
interface trap density of states, while it does not increase significantly for the second reduction. 
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5.3.2. Reduction in Surface Roughness 
 

The perpendicular component of the electric field is very small at low gate voltages, 

resulting in very less surface roughness scattering; whereas, at high gate voltages, due to a large 

perpendicular field, surface roughness scattering is large. Thus, surface roughness scattering plays 

an important role in limiting the low field mobility at large gate voltages. Hence, a reduction in 

surface roughness will improve the surface mobility at large gate voltages, but will not have much 

of an effect in subthreshold and near threshold regions. Figure 5.21 shows the Id-Vg curves 

obtained when the surface roughness is reduced by factors of 10 and 100. 
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Figure 5.21. Drain current versus gate-source voltage curve for a 4H-SiC MOSET at room 
temperature and a drain-source voltage of 0.25V. Improvement in current at higher gate voltages 
is obtained on reduction of the surface roughness. There is not much improvement in current at 
lower gate voltages, because surface roughness scattering is not significant at low gate voltages. 
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5.3.3. Combined Reduction of Interface Trap Density and Surface Roughness 
 

My simulations show that for device operation near threshold, reduction in interface trap 

density of states near the band edges gives a more pronounced performance enhancement than 

reduction in surface roughness.  Figure 5.22 shows the comparison of the device IV 

characteristics for the cases of reduction in surface roughness, and the reduction in interface trap 

density of states, at a gate voltage of 4V. As can be clearly seen, reduction of surface roughness 

gives only about a 60% improvement in current, whereas, reduction of the interface states density 

gives a whopping 500% improvement in current. 

 

At higher gate voltages though, improvement in surface roughness gives about the same 

performance enhancement, as the improvement in interface trap density of states would give. 

Figure 5.23 shows the current densities obtained when both, the interface trap density of states 

and the surface roughness are reduced by a factor of 10 each. Compare these current densities to 

the ones shown in Figures 5.11 and 5.19. A combined reduction in both interface trap density and 

surface roughness gives a much more significant performance enhancement, than each individual 

reduction. This is very evident in Figure 5.24, which shows the currents obtained when the 

interface trap density and the surface roughness are reduced by a factor of 10, individually, and in 

combination. 
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Figure 5.22. Comparison of the improvement in currents due to reduction in surface roughness, 
and the reduction in interface trap density of states, at a gate-source voltage of 4V. As Coulomb 
scattering dominates the total mobility at low gate voltages, reduction of interface trap density of 
states has a much higher effect on the current than the reduction in surface roughness, at Vg = 4V. 
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Figure 5.23. Current density variation with depth at the center of the channel in a 4H-SiC 
MOSFET, after reduction in the density of interface states at the band edge, and a reduction in the 
surface roughness, by a factor of 10 each. Compare the current densities obtained at higher gate 
voltages to the ones shown in Figures 5.19 and 5.11. The current densities near the surface rise up 
sharply at higher gate voltages because surface roughness scattering, and Coulomb scattering due 
to interface traps, are both high at large gate voltages. The rise is as much at lower gate voltages, 
because surface roughness does not play much role at low gate voltages. 
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Figure 5.24. Drain current versus gate-source voltage at room temperature, with the surface 
roughness and the interface trap density of states reduced by a factor of 10 each. Notice how 
significant is the rise in current at higher gate voltages as compared to the cases when either one 
of two degrading mechanisms is improved. 
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5.4. Future Work 

In this work I have developed a robust Coulomb scattering mobility model that describes 

the physics of the inversion layer in 4H SiC MOSFETs in great detail. So far, I have used this 

model to extract parameters for room temperature simulation. The next step will be to evaluate 

the performance of the model at higher temperatures by carrying out high temperature 

simulations and comparing the results to experiments. Also, the simulations have been carried out 

for steady state. Now, transient simulations with proper models should be designed and 

implemented. SiC MOSFETs are to be used as high power devices. High power devices have 

different structures so that they can be operated at very high voltages without causing breakdown 

of the materials. Hence, rather than just simple MOSFET structures, simulation of DMOSFET, 

UMOSFET and VMOSFET structures should be carried out. 

 

I would like to thank all of you who have taken the time to read my thesis. I hope this 

work was somewhat informative and interesting to you. 
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