Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    INVESTIGATIONS OF THE EFFECTS OF OYSTER ALLOMETRY AND REEF MORPHOLOGY ON FILTRATION RATE AND PARTICLE CAPTURE USING NUMERICAL MODELS

    Thumbnail
    View/Open
    Forsyth_umd_0117N_15014.pdf (4.258Mb)
    No. of downloads: 477

    Date
    2014
    Author
    Forsyth, Melinda
    Advisor
    Harris, Lora A
    Metadata
    Show full item record
    Abstract
    Crassostrea virginica, the eastern oyster, is a filter-feeding, particle clearing bivalve currently at low numbers in Chesapeake Bay. Accurately describing the filtration rate of these bivalves is essential to estuarine management and associated efforts to understand the impact of oyster populations on water quality. Here, the filtration rate equations for three existing models (Cerco and Noel (2005), Fulford et al. (2007), and Powell et al. (1992)) are assessed. I examine how each of the models define the maximum filtration rate and explore the various limitation factors that modify these maximum rates via environmental conditions that include salinity, temperature, total suspended solids, and dissolved oxygen. Based on the individual model strengths found in the model comparison and a literature review, I determine a maximum filtration rate of 0.17 m<super>3</super> g<super>-1</super> DW day<super>-1</super> for a 1 g DW oyster to be a better filtration rate, which is then modified by a combination of limitation factors taken from a variety of sources. These include those described by Fulford et al. (2007) for total suspended solids and salinity, and a newly developed function to describe temperature dependence. Differences in size are incorporated by using a basic allometric formulation where a weight exponent alters filtration rate based on individual oyster size.
    URI
    http://hdl.handle.net/1903/15221
    Collections
    • Biology Theses and Dissertations
    • MEES Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility