Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Spectrum Sensing Security in Cognitive Radio Networks

    Thumbnail
    View/Open
    Khawar_umd_0117N_11849.pdf (1.169Mb)
    No. of downloads: 1866

    Date
    2010
    Author
    Khawar, Awais
    Advisor
    Clancy, Thomas Charles
    Metadata
    Show full item record
    Abstract
    This thesis explores the use of unsupervised machine learning for spectrum sensing in cognitive radio (CR) networks from a security perspective. CR is an enabling technology for dynamic spectrum access (DSA) because of a CR's ability to reconfigure itself in a smart way. CR can adapt and use unoccupied spectrum with the help of spectrum sensing and DSA. DSA is an efficient way to dynamically allocate white spaces (unutilized spectrum) to other CR users in order to tackle the spectrum scarcity problem and improve spectral efficiency. So far various techniques have been developed to efficiently detect and classify signals in a DSA environment. Neural network techniques, especially those using unsupervised learning have some key advantages over other methods mainly because of the fact that minimal preconfiguration is required to sense the spectrum. However, recent results have shown some possible security vulnerabilities, which can be exploited by adversarial users to gain unrestricted access to spectrum by fooling signal classifiers. It is very important to address these new classes of security threats and challenges in order to make CR a long-term commercially viable concept. This thesis identifies some key security vulnerabilities when unsupervised machine learning is used for spectrum sensing and also proposes mitigation techniques to counter the security threats. The simulation work demonstrates the ability of malicious user to manipulate signals in such a way to confuse signal classifier. The signal classifier is forced by the malicious user to draw incorrect decision boundaries by presenting signal features which are akin to a primary user. Hence, a malicious user is able to classify itself as a primary user and thus gains unrivaled access to the spectrum. First, performance of various classification algorithms are evaluated. K-means and weighted classification algorithms are selected because of their robustness against proposed attacks as compared to other classification algorithm. Second, connection attack, point cluster attack, and random noise attack are shown to have an adverse effect on classification algorithms. In the end, some mitigation techniques are proposed to counter the effect of these attacks.
    URI
    http://hdl.handle.net/1903/11274
    Collections
    • Electrical & Computer Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility