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This thesis explores the use of unsupervised machine learning for spectrum

sensing in cognitive radio (CR) networks from a security perspective. CR is an

enabling technology for dynamic spectrum access (DSA) because of a CR’s ability

to reconfigure itself in a smart way. CR can adapt and use unoccupied spectrum

with the help of spectrum sensing and DSA. DSA is an efficient way to dynamically

allocate white spaces (unutilized spectrum) to other CR users in order to tackle the

spectrum scarcity problem and improve spectral efficiency. So far various techniques

have been developed to efficiently detect and classify signals in a DSA environment.

Neural network techniques, especially those using unsupervised learning have some

key advantages over other methods mainly because of the fact that minimal pre-

configuration is required to sense the spectrum. However, recent results have shown

some possible security vulnerabilities, which can be exploited by adversarial users

to gain unrestricted access to spectrum by fooling signal classifiers. It is very im-

portant to address these new classes of security threats and challenges in order to

make CR a long-term commercially viable concept.



This thesis identifies some key security vulnerabilities when unsupervised ma-

chine learning is used for spectrum sensing and also proposes mitigation techniques

to counter the security threats. The simulation work demonstrates the ability of

malicious user to manipulate signals in such a way to confuse signal classifier. The

signal classifier is forced by the malicious user to draw incorrect decision boundaries

by presenting signal features which are akin to a primary user. Hence, a malicious

user is able to classify itself as a primary user and thus gains unrivaled access to

the spectrum. First, performance of various classification algorithms are evaluated.

K-means and weighted classification algorithms are selected because of their ro-

bustness against proposed attacks as compared to other classification algorithm.

Second, connection attack, point cluster attack, and random noise attack are shown

to have an adverse effect on classification algorithms. In the end, some mitigation

techniques are proposed to counter the effect of these attacks.
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Chapter 1

Introduction

With the growth of wireless communication technologies the competition for

access to electromagnetic spectrum has increased. In order to use the electromag-

netic spectrum in an efficient manner a new spectrum sharing technique known as

Dynamic Spectrum Access (DSA) was proposed [1]. DSA aims to dynamically allo-

cate spectrum for efficient utilization. This is done by sensing the frequency band

for possible white spaces (unoccupied spectrum). The field of spectrum sensing has

grown significantly over the past five years, with the growth of cognitive radio tech-

nology. Spectrum sensing is required for DSA, spectral awareness, interoperability,

and many other smart radio applications [2].

1.1 Spectrum Reform

The radio spectrum is very limited as compared to ever increasing bandwidth

requirements of communication technologies. Moreover, in order to keep the trans-

mission interference-free, an exclusive spectrum band is alloted per user which results

in an inefficient use of spectrum. The inefficiency is due to the underutilization of

spectrum. Some traditional occupants of spectrum are shown in Figure 1.1 [3]. Most

of these occupants do not use the spectrum all the time, so if the idle spectrum can

be alloted to any other user it can result in greater spectrum efficiency.
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Figure 1.1: Radio spectrum licensed to traditional communication systems

Internationally frequency allocation or licensing is done by the International

Telecommunication Union (ITU) which is the United Nations (UN) agency for in-

formation and communication technologies. The radio communication sector for

ITU (ITU-R) is responsible for economical, efficient, and rational use of spectrum

all over the world. ITU-R sets guidelines that helps countries regulate their spec-

trum. However, nations have the liberty for spectrum use within their boundaries.

In the United States of America (USA), spectrum is regulated by Federal Com-

munications Commission (FCC) and National Telecommunication and Information

Administration (NTIA). The FCC, which is an independent regulatory agency, ad-

ministers spectrum for non-Federal use (i.e. state, local government, commercial,

private internal business, and personal use) and the NTIA, which is an operating

unit of the Department of Commerce, administers spectrum for Federal use (e.g.
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use by the Military, the Federal Aviation Authority (FAA), and the Federal Bureau

of Investigation (FBI)). The Spectrum Policy Task Group of the FCC has set three

guidelines for the efficient spectrum utilization [4]:

a. improve access in space, time, and frequency;

b. enable flexible regulation in permitting controlled access to license spectrum,

and

c. stimulate efficient spectrum usage through policies.

Possible solutions to the problem of spectrum scarcity is cognitive radios and

dynamic spectrum access. It can accommodate ever increasing data rich wireless

communication systems by efficient utilization of spectrum. Cognitive radios would

autonomously regulate the spectrum with the help of dynamic spectrum access.

1.2 President’s Broadband Policy

Historically, the FCC’s approach to allocating spectrum has been to formulate

policy on a band-by-band, service-by-service basis, typically in response to specific

requests for service allocations or station assignments. This approach has been crit-

icized for being ad-hoc, overly prescriptive, and unresponsive to changing market

needs. The new National Broadband Plan aims to open up vast tracts of underuti-

lized spectrum, not only for licensing by auction, but also for shared and unlicensed

use. The plan aims to reallocate 500 megahertz (MHz) of wireless spectrum in the

next ten years for mobile, fixed, and unlicensed broadband, of which 300 MHz be-

3



tween 225 MHz and 3.7 gigahertz (GHz) should be made newly available for mobile

use within five years [5]. This spectrum would be made available for a variety of

licensed and unlicensed flexible commercial use, as well as to meet the broadband

needs of specialized users such as public safety, emergency, educational, and other

important users. It is notable that the plan recommends the allocation of a new

contiguous band of unlicensed spectrum, as well as the rapid implementation of

unlicensed access to the unused TV channels known as white spaces [5].

1.3 Military/Defense Requirements

The military is one of the first adopters of cognitive radio technology, with the

launch of the Defense Advanced Research Projects Agency (DARPA) Next Gen-

eration Communication (XG) program [6]. However, there are many open issues

still to be addressed. The XG program goals are to develop both the enabling

technologies and system concepts to dynamically redistribute allocated spectrum

along with novel waveforms in order to provide dramatic improvements in assured

military communications in support of a full range of worldwide deployments [6].

US forces face unique spectrum access issues in each country in which they oper-

ate, due to competing civilian or government users of national spectrum. The XG

program approach is to develop the theoretical underpinnings for dynamic control

of the spectrum, and the technologies and subsystems that enable reallocation of

the spectrum. The proposed program goals are to develop, integrate, and evaluate

the technology to enable equipment to automatically select spectrum and operating

4



modes to both minimize disruption of existing users, and to ensure operation of US

systems. The result of the XG program will be to develop and demonstrate a set

of standard dynamic spectrum adaption technologies for legacy and future emitter

systems for joint service utility [6].

One of the problems of significant importance is security in cognitive radio

systems. Considering the military use of this system the security aspect becomes

even more important.

1.4 Motivation

Numerous techniques have been developed to efficiently detect and classify

signals in DSA environments. A major area of study has been the use of neural

networks for classifying features extracted from signals. Previous work shows the

usefulness of machine learning to cognitive radio in signal classification [7, 8]. Re-

search presented in this thesis points out key security issues related to the use of

machine learning in cognitive radio networks, specifically related to spectrum sens-

ing attacks, and attacks that can fool signal classifiers. Unsupervised learning is

powerful in the sense that minimal preconfiguration is required and radios can learn

the properties of other devices in their environment. However, an adversary can also

learn the properties of the network thus compromising the security of the network.

This thesis explores attacks against signal classifiers and their mitigation techniques

in an unsupervised learning environment.
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Chapter 2

Background

The field of radio architecture has recently undergone a revolution of design,

significantly enabled by Moore’s law of computational evolution, where sufficient

computational resources are available in Digital Signal Processors (DSPs) and Gen-

eral Purpose Processors (GPPs) to implement the modulation and demodulation,

and all the signaling protocols of a radio as a software application. With the ex-

ponential growth in the ways and means by which people need to communicate

(data communications, voice communications, video communications, broadcast

messaging, command and control communications, and emergency response com-

munications) modifying radio devices easily and cost-effectively has become busi-

ness critical. Commercial wireless communication industry is currently facing prob-

lems due to constant evolution of link-layer protocol standards (e.g. 2.5G, 3G,

4G, and beyond) and existence of incompatible wireless network technologies (e.g.

WiFi, WiMax, IEEE 802.22, and others) in different countries inhibiting deploy-

ment of global roaming facilities. This has led to problems in rolling-out new ser-

vices/features due to wide-spread presence of legacy subscriber handsets. Software

Defined Radios (SDRs), or its more advanced form Cognitive Radios (CRs), offer

solution to this problem. CR technology, in which one radio or even a network of

radios are able to learn a successful degree of adaptability, that aids the user, the

6



network, and/or the spectrum owner. As new services are offered, more spectrum

will be needed. CR will provide the means for radios to communicate with greater

spectrum efficiency.

This chapter introduces Software Defined Radios (SDRs) and their typical

architecture; Cognitive Radios (CRs), their architecture, and network(s) composed

of CRs; Machine Learning (ML) and their usefulness in spectrum sensing for CRs;

and Dynamic Spectrum Access (DSA).

2.1 Software Defined Radios

A Software Defined Radio (SDR) is a general-purpose transceiver which sup-

ports multiple air interfaces, protocols, coding, and modulation schemes. More-

over, it is reconfigurable via software which runs on Field Programmable Gate Ar-

rays (FPGA), Application Specific Integrated Circuits (ASIC), GPPs, or DSPs [9].

SDRs have transformed future wireless communication devices. In the past, tra-

ditional hardware-dependent communication devices had to be changed/upgraded

from scratch for new technology as they offered no software control. They were

fixed in functions and control. By contrast, SDR technology provides an efficient

and comparatively inexpensive solution to this problem. SDR allows multi-mode,

multi-band, and/or multi-functional wireless devices that can be enhanced using

software upgrades. Though the term SDR was first used by Joseph Mitola [10],

it has been in use in the defense sector since the 1970’s. The early 1990’s saw

rapid growth in SDR technology with the Department of Defense (DoD) launching

7
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Figure 2.1: A Typical SDR Receiver.

a program called SPEAKeasy [11]. With the success of SPEAKeasy this technol-

ogy gradually morphed from Speakeasy to Programmable Modular Communication

Systems (PMCS), to Digital Modular Radio (DMR) [12], and to the Joint Tactical

Radio Systems (JTRS) [13, 14]. SDRs have significant utility for the military and

commercial cell phone services, both of which must serve a wide variety of changing

radio protocols in real time. SDR technology brings the flexibility, cost efficiency,

and power to drive communications forward. SDR has wide-reaching benefits real-

ized by service providers, product developers, and end users [13].

2.1.1 Architecture of SDR

Figure 2.1 shows a typical SDR receiver. Some of the basic building blocks

of any SDR are its antenna(s), duplexer and diplexer, radio-frequency (RF) filter,

low noise amplifier (LNA), image reject and intermediate-frequency (IF) filter, RF

8



mixer, local oscillator (LO), automatic gain control (AGC), analog-to-digital (ADC)

and digital-to-analog (DAC) converters. These building blocks are further discussed

in the following sections:

• Antennas: Antenna design and selection is very crucial for any wireless de-

vice. For a SDR, which is designed to support multiple bands, the antenna

choice becomes even more critical. So, an antenna which is capable of operat-

ing over a large band is desired for SDR [13].

• Duplexer and Diplexer: A duplexer is used to separate transmitted and

received signals in a common frequency range that uses a common antenna.

Where as, the diplexer isolates the transmitted and received signals in dis-

tinct frequency ranges. SDR that support multiple modes, such as full-duplex

and half-duplex systems, require a duplexer or diplexer that works for both

systems, which is a significant design challenge [13].

• RF Filter: This initial filter after the duplexer rejects out-of-band interfer-

ence. It can also help isolate the receiver from the transmitted signal. This

filter should have low loss and provide as much selectivity, as feasible, as pos-

sible without limiting the bandwidth needed to support multiple modes of the

SDR [13].

• Low Noise Amplifier (LNA): The LNA boosts the signal power level into

a range compatible with other components in the circuit. The primary design

challenge is to maximize gain without adding excessive noise into signal, but

this must be traded for power consumption and dynamic range [13].

9



• Image Reject and IF filter: The image reject filter reduces noise and

protects the mixer from interference, including any signals located at the image

frequency, which, after conversion, may lie in the same band as the desired

signal [13].

• RF Mixer: The RF mixer is used to down-convert signal and can be a major

source of inter-modulation distortion since it is, by its very nature, a non-

linear device. Increasing the local oscillator power to the mixer is one way to

improve linearity and to reduce distortion, but it reduces the battery life of

portable devices. Active RF mixers can also be a source of noise [13].

• Local Oscillator (LO): The mixer is driven by a LO whose frequency de-

termines the channel selection. This LO should have a good tuning range and

good phase stability to minimize the contributions of phase noise to the noise

floor. Thermal noise will also contribute to the noise floor. Power consumption

can be a major design issue for LO [13].

• Automatic Gain Control (AGC): The AGC is primarily used to ensure

that signal has a voltage level that is compatible and makes best use of the

input range of ADC. The AGC should be fast enough to account for changing

signal levels. It ensures that minimal noise is injected into the system and

signal is not clipped by the ADC, which would create non-linear distortion.

An AGC should have fast response in order to handle rapid variations of signal

levels in situations where fast channel fading is present [13].

10



• ADC Converter: The ADC must sample a real signal at a rate that is at least

twice the bandwidth of the signal, and in the case of multi-mode receivers, the

highest bandwidth signal dictates sampling rate. Moreover, different signaling

standards require different amounts of dynamic range. This makes the design

of ADC for SDR more challenging [13].

2.2 Cognitive Radios

Cognitive Radio (CR) is an emerging technology to realize wireless devices with

cognition capabilities such as learning, sensing, awareness, and reasoning. They of-

fer global seamless connectivity and solve the interoperability issues among various

wireless standards. CRs are a more advanced form of SDRs. They are built on SDR

platforms but with additional intelligence. In fact, SDR is a key enabling technology

to realize a CR. FCC defines CR as ”A radio or system that senses its operational

electromagnetic environment and can dynamically and autonomously adjust its ra-

dio operating parameters to modify system operation, such as maximize throughput,

mitigate interference, facilitate interoperability, and access secondary markets” [15].

Hence, they are context aware, they sense and adapt to an ever-changing commu-

nication environment. CRs can generally be classified as policy-based or learning

radios [8]. In policy based CR, we observe the environment and by reasoning de-

termine how to optimally operate, for example, by switching modulation scheme if

signal strength increases/decreases [16]. Learning CRs usually are equipped with

Artificial Intelligence (AI), the form of a learning engine. The learning engine uses

11
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Figure 2.2: Cognitive radio architecture showing interaction between software radio,

knowledge base, and policy and learning engines.

a knowledge base from experience, and is not dependent on hard rules for decision

making as in policy based radios [8]. The learning algorithms could be based on

hidden Markov models [17], neural networks [18], or genetic algorithms [19].

Some commercially available CR hardware and software platforms are: GNU

Radio [20], Universal Software Peripheral Radio (USRP) [21], and XG Radio by

Shared Spectrum [22].

2.2.1 Cognitive Radio Architecture

Figure 2.2 [8], shows a generic CR architecture and the interaction between

various components. CR is often thought as an extension to SDR. It adds additional
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functionalities to SDR like cognition, knowledge base, reasoning engine, and learning

engine. A well defined application programming interface (API) dictates commu-

nication between the cognitive engine and the software radio. The software radio

exports variables that are either read-only or read-write. The read-only parameters

represent statistics maintained by the software radio, such as signal-to-noise ration

or bit error rate. The read-write variables represent configurable parameters such

as transmit power, coding rate, or symbol constellation [8]. Knowledge base is ra-

dio’s long term memory and helps cognitive engine generate conclusions based on

information defined in it. The learning engine is responsible for manipulating the

knowledge base from experience. The reasoning engine uses planning, which is a

field of AI that works with logic [8].

2.3 Cognitive Radio Networks

Current communication networks limit network’s ability to adapt, often re-

sulting in sub-optimal performance. The common network elements (consisting of

nodes, protocol layers, policies, and behaviors) are unable to make optimal adapta-

tions with changing network conditions thus resulting in poor performance. Cogni-

tive networks promise to remove these limitations by allowing networks to observe,

act, and learn in order to optimize the performance. Cognitive networks are defined

by [23] as ”... a network with a cognitive process that can perceive current network

conditions, and then plan, decide and act on those conditions. The network can

learn from these adaptations and use them to make future decisions, all while tak-
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ing into account end-to-end goals.” Cognitive networks are different from cognitive

radios in many ways. Cognitive networks aim for end-to-end network performance,

whereas cognitive radio’s goals are localized only to the radio’s user. Here, end-to-

end denotes all the network elements involved in the transmission of a data flow.

A cognitive network should provide, over an extended period of time, better

end-to-end performance than a non-cognitive network. Cognition could be used

to improve resource management, quality of service (QoS), security, access con-

trol, and/or many other network goals. Cognitive networks are only limited by the

adaptability of the underlying network elements and the flexibility of the cognitive

framework. In this manner, cognitive networks are not limited to only wireless

networks. Ad-hoc networks, infrastructure-mode wireless networks, fully wired net-

works and heterogeneous networks are also candidates for cognitive network design

[23]. The cost associated with rolling out a cognitive network must be outweighed

by the performance improvement the cognitive network provides. The end-to-end

goals are what gives a cognitive network its network-wide scope, separating it from

other technologies, which have only a local, single element scope [2].

Cognitive networks require a Software Adaptable Network (SAN) to imple-

ment the actual network functionality and allow the cognitive process to adapt the

network. Similar to a cognitive radio, which depends on an SDR to modify aspects

of radio operation (e.g. time, frequency, bandwidth, code, spatiality, and waveform),

a SAN depends on a network that has one or more adjustable elements [23]. Practi-

cally, this means that a network may be able to modify one or several layers of the

network stack in its member nodes. A simple example of a SAN could be a wireless
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network with directional antennas (antennas with the ability to scan their receive

or transmit strength to various points of rotation). A more complex example would

involve more modifiable aspects at various layers of protocol stack, such as routing

control or Medium Access Control (MAC) [23].

2.4 Machine Learning

In a machine learning environment, a machine changes its structure, program

or data (based on its inputs or in response to external observations) in such a manner

that its expected future performance improves. It refers to changes in systems

that perform tasks associated with AI. Commonly, machine learning systems are

classified on the basis of the underlying learning strategies used. Camastra and

Vinciarelli in [24] identify four different learning types: rote learning, learning from

instruction, learning by analogy, and learning from examples. The focus in this

thesis is machine learning from examples. Given a set of examples of a concept, the

learner induces a general concept description that describe the examples. The three

main ways to learn from examples are: supervised learning, reinforcement learning,

and unsupervised learning [24].

2.4.1 Supervised Learning

In Supervised Learning, the data is a sample of input-output patterns often

called the training sample or training set. The task is to find a deterministic function

that maps any input to an output that can predict future input-output observations,

15



and minimize the errors as much as possible. Examples of this learning tasks are the

recognition of handwritten letters and digits, the prediction of stock markets and

many more [24]. Supervised learning can further be distinguished in classification

learning and regression learning depending on the output. In classification learning,

each element of output space is called a class. The output space has no structure

except whether two elements of the output are equal or not. On the other hand, if the

output space is formed by the values of continuous variables then the learning task

is known as the problem of regression or function learning [25]. Typical examples

of regression are to predict the values of shares in the stock exchange market and

to estimate the values of physical measure (e.g. temperature) in a section of a

thermoelectric plant.

2.4.2 Reinforcement Learning

Reinforcement learning has its roots in control theory. It considers the scenario

of a dynamic environment that results in state-action-reward triples as the data.

The difference between reinforcement learning and supervised learning is that in

reinforcement learning no optimal action exists in a given state, but the learning

algorithm must identify an action in order to maximize the expected reward over

time. The concise description of data is the strategy that maximizes the reward.

The problem of reinforcement learning is to learn what to do, i.e. how to map

situations to actions, in order to maximize a given reward. Unlike a supervised

learning task, the learning algorithm is not told which actions to take in a given
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situation. Instead, the learner is assumed to gain information about the actions

taken by some reward not necessarily arriving immediately after the action is taken.

An example of such a problem is learning to play chess. A comprehensive survey on

reinforcement learning can be found in [26].

2.4.3 Unsupervised Learning

If the data is only a sample of objects without associated target values, the

problem is known as unsupervised learning. In unsupervised learning there is no

teacher. Here a concise description of the data can be a set of clusters or a probability

density stating how likely it is to observe a certain object in the future. A general

way to represent data is to specify a similarity between any pair of objects. If two

objects share much structure, it should be possible to reproduce data from the same

prototype. This idea underlies clustering algorithms that form a rich subclass of

unsupervised algorithms. The clustering algorithms aim to find grouping of the

objects such that similar objects belong to the same cluster while keeping the the

number of clusters fixed. Typical examples of unsupervised learning tasks include

the problem of image and text segmentation, and the task of novelty detection in

process control [24].

In addition to clustering algorithms, unsupervised learning techniques have

algorithms whose aim is to represent high-dimensionality data in low-dimension

spaces, trying to preserve the original information of data. These techniques are

often called feature selection or dimensionality reduction methods [24]. The use of
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more dimensions than necessary leads to several problems. The first one is the space

needed to store the data. The speed of algorithms using the data depends on the

dimension of the vectors, so a reduction in dimensionality can result in reduced

computation time. An example of feature selection algorithm is Self Organizing

Maps [27].

2.4.4 Applications of Machine Learning for Spectrum Sensing

Traditional spectrum sensing techniques are computationally complex and re-

quire significant amount of observation time for adequate performance [7]. Machine

learning is a powerful tool which when used in conjunction with CR has promising

results for DSA [8]. Signal classifiers can be designed which can do most of the work

offline thus reducing online computation. This results in better and quick sensing

decisions. Recently, researchers have used supervised, unsupervised, and reinforce-

ment learning for spectrum sensing. Supervised learning requires prior training in

order to accurately classify the signals. The supervised learning include the K-

nearest neighbor algorithm [28], support vector machines [29], and neural networks

[30]. Neural networks have long been considered for pattern recognition and signal

classification [30], and have proven to be robust to a variety of conditions such as

interfering signals and noise [31]. Researchers have also used Q-learning algorithm

of reinforcement learning for spectrum sensing. Mo Lin et al in [32] showed the use

of Q-learning for spectrum sensing without the use of any channel state information

for estimation of primary traffic. Reddy in [33] has discussed the use of Q-learning
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for detection of known and unknown signals.

This thesis demonstrates the use of unsupervised machine learning for spec-

trum sensing for the first time [34, 35]. Unlike supervised learning, unsupervised

learning does not need any training data for signal classification. The examples

of unsupervised learning include K-means clustering [36] and self-organizing maps

[27]. The applications of machine learning especially the unsupervised learning for

Cognitive Radios and DSA are further discussed in Chapter 3.

2.5 Dynamic Spectrum Access

Data transmitted through a wireless channel is not limited to voice any more.

With the growth and development of multimedia rich content, the demand for ad-

ditional spectrum has increased. This has given rise to the problem of spectrum

scarcity. But actually, at any given time and location, much of the prized spectrum

lies idle. This paradox indicates that spectrum shortage results from the spectrum

management policy rather than the physical scarcity of usable frequencies. Tra-

ditional approaches of static spectrum allocation are becoming obsolete with the

growth in demand of spectrum for high date rate applications. A possible solution

to this problem is dynamically sharing spectrum among many users. The utilization

of spectrum by different users can be put in two categories: a user having higher

preference called as the Primary User, and other users wishing to opportunistically

access the spectrum called Secondary Users. Secondary users have less preference

over spectrum than the primary user. A primary user could be the one who owns
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the spectrum and leases out the spectrum to any secondary user when it is unused,

given that when the need arises to use the spectrum the secondary user has to vacate

the spectrum.

One of the key advantages of CR is that they are not dependent on any fixed

license band, they can be reconfigured to any available frequency band. Thus CR

offers a solution to efficient utilization of scarce spectrum by dynamically allocating

the spectrum. The DSA strategies can be broadly categorized under three models

according to Figure 2.3 [37], which are discussed in the following sections.

2.5.1 Dynamic Exclusive Use Model

This model allows the spectrum band to be licensed to services for exclusive

use. The main idea is to introduce flexibility to improve spectrum efficiency. The

two approaches proposed under this model are: Spectrum property rights [38] and
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dynamic spectrum allocation [39]. The former approach allows licensees to sell

and trade spectrum and to freely choose technology. The second approach, dynamic

spectrum allocation, was brought forth by the European DRiVE project [39]. It aims

to improve spectrum efficiency through dynamic spectrum assignment by exploiting

the spatial and temporal traffic statistics of different services. In other words, in a

given region and at a given time, spectrum is allocated to services for exclusive use.

Based on an exclusive-use model, these approaches cannot eliminate white space in

spectrum resulting from the bursty nature of wireless traffic [37].

2.5.2 Open Sharing Model

This model employs open sharing of spectrum among users in a spectral re-

gion. It is also known as spectral commons [40]. This spectrum management model

supports centralized [41] and distributed [42] sensing. This model is highly success-

ful for wireless services operating in the unlicensed industrial, scientific, and medical

(ISM) radio band (e.g., WiFi).

2.5.3 Hierarchical Access Model

This model opens licensed spectrum to secondary users while limiting interfer-

ence perceived by primary users. This is done on a hierarchical basis. This model

supports two approaches for spectrum sharing between primary and secondary user.

They are spectrum underlay and spectrum overlay [37]. The spectrum underlay ap-

proach imposes severe constraints on the transmission power of secondary users so
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that they operate below the noise floor of primary users. By spreading transmitted

signals over a ultra-wide frequency band (UWB), secondary users can potentially

achieve short-range high data rate with extremely low transmission power. Based

on a worst-case assumption that primary users transmit all the time, this approach

does not rely on detection and exploitation of spectrum white space. Spectrum

overlay was first proposed by Mitola [43] under the term spectrum pooling and then

investigated by the DARPA Next Generation (XG) [6] program under the term op-

portunistic spectrum access. Differing from spectrum underlay, this approach does

not necessarily impose severe restrictions on the transmission power of secondary

users, but rather on when and where they may transmit. It directly targets at spa-

tial and temporal spectrum white space by allowing secondary users to identify and

exploit local and instantaneous spectrum availability in a non-intrusive manner [37].

Compared to the dynamic exclusive use and open sharing models, this hierar-

chical model is perhaps the most compatible with the current spectrum management

policies and legacy wireless systems [37].
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Chapter 3

Spectrum Sensing

One of the primary requirement of CRs is their ability to scan the entire

band for the presence/absence of primary users. This process is called Spectrum

Sensing. It is performed locally by a secondary user or collectively by a group of

secondary users. Spectrum Sensing is characterized by the join of a quantitative

and qualitative analysis of a reference band through the collection of information in

terms of frequency usage and air interface classification at a used frequency [44]. The

aim is to identify idle spectrum bands/slots known as white spaces. The available

spectrum bands are then analyzed to determine their suitability for communication

in-terms of signal-to-noise ratio (SNR), error rate, delays, interference, and fading.

This chapter discusses types of spectrum sensing, challenges associated in sensing

the spectrum, some common spectrum sensing methods, and security in spectrum

sensing.

3.1 Challenges

The task of sensing the spectrum accurately and efficiently comes with many

challenges, which are discussed in this section.

A. Hardware requirements:

The CR should support high sampling rate, large dynamic range for the analog
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to digital converters, high speed signal processor, and multiple analog front end

circuitry. Unlike traditional receivers, the CR terminals are required to process

transmission over a much wider radio frequency (RF) band. This imposes

further constraints on the design of antennas and power amplifiers. In order to

keep the delay factor as small as possible, high speed processing units (DSPs or

FPGAs) are required to execute computationally demanding signal processing

tasks. Two commonly used architectures for spectrum sensing are: single-

radio and dual-radio [45, 46]. The single-radio architecture allots a specific

time slot for spectrum sensing. This architecture is very low cost and simple

to implement. However, due to the limited sensing duration, accuracy can not

be guaranteed. Also, since some time slots are used for sensing rather than

sending data, this approach is not spectrally efficient [47, 48]. On the other
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hand, dual-radio architecture offers separate channels for data transmission

and spectrum sensing [49, 50]. Both tasks are executed simultaneously. This

approach offers better spectrum efficiency but more power is consumed and

expensive hardware is required.

B. Hidden Primary User

The hidden primary user problem is similar to the hidden node problem (occurs

when a node is visible from a wireless access point (AP), but not from other

nodes communicating with said AP) in Carrier Sense Multiple Access (CSMA).

Some possible factors leading to this problem are severe multipath fading

observed by secondary users while scanning for primary users’ transmission.

This problem can be solved by using cooperative sensing [51].

C. Spread Spectrum Users:

If the primary user is a Code Division Multiple Access (CDMA) device (or

any spread spectrum user), its frequency is spread over wide area and its

challenging to predict user/detect its frequency if its frequency hop pattern

and synchronization scheme is not known before hand [52].

D. Sensing Duration and Frequency:

The primary user should be detected as soon as it wants to occupy the channel

otherwise it would result in interference. The secondary user must detect the

presence of primary user in a timely fashion and thus vacate the spectrum in

order to avoid interference. Hence, sensing methods should be able to identify
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presence of primary user within a certain duration. This requirement poses a

limit on the performance of sensing algorithm and creates a challenge for CR

design. The effect of sensing time on the performance of CR is investigated in

[53]. Sensing frequency, i.e. how often CR should perform spectrum sensing,

is a design parameter that needs to be chosen carefully depending upon the

temporal characteristics of primary user in the environment [54].

E. Other factors:

In addition to above challenges, spectrum sensing algorithms have to be ro-

bust, secure, resource efficient, simple to implement, able to support multiple

secondary users, power efficient, and resilient to multipath fading [2].

3.2 Types of Spectrum Sensing

The radio spectrum can be sensed by either one cognitive radio or different ra-

dios can collaborate and share the information about the spectrum utilization. This

approach to sense the spectrum can solve the problem of sensing time, shadowing,

noise uncertainty, probability of miss classification, and the hidden primary user

problem which are very common in a spectrum sensing environment [51, 55, 56].

Some of the challenges in this approach is to come up with efficient algorithms

which are good at sharing the information in a time efficient manner, have reduced

complexity and the problem of having a control channel [57]. The following sec-

tions discuss various ways to sense the spectrum along with their advantages and

disadvantages.
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3.2.1 Cooperative Sensing

In cooperative sensing architectures, the control channel can be implemented

using different methodologies. These include a dedicated band, unlicensed band

(such as Industrial, Scientific and Medical (ISM)), and underlay Ultra Wideband

(UWB) system [58]. One of these methods can be selected depending on the system

requirements. The shared spectrum decisions can be soft or hard decisions made by

each CR [59]. Cooperative sensing can be implemented in two fashions: centralized

or distributed [1]. These methods are explained in the next two sections.

3.2.2 Centralized Sensing

In centralized sensing, a central agent is given the task of handling and dis-

patching knowledge of spectrum, i.e. identification of available spectrum, which it

gets from other participating CRs. The hard (binary) sensing results are gathered at

a central place which is known as Access Point (AP) in [55]. The main disadvantage

is dependency on a single centralized agent, any problem with this can easily mess

up the whole system. On the other hand, centralized sensing promises considerable

performance gains over other sensing methods [60].

3.2.3 Distributed Sensing

In distributed sensing, CRs share information among themselves but when it

comes to decisions they make their own decisions as to which part of spectrum to

occupy/vacate. In application scenarios involving geographically distributed radios,
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such as a wireless communication system, distributed spectrum sensing approaches

are worth considering due to the variability of the radio signal [46, 52, 55]. Such

methods may significantly increase the reliability of the spectrum estimation process,

at the expense of computational complexity and power/bandwidth usage for the

transmission of spectrum sensing information. The main advantage comes from

the fact that no central authority is required for making decisions and thus has

reduced cost. A distributed CR architecture for spectrum sensing is given by [61]

and various algorithms are discussed in [2]. The results show that the performance

of CR improves considerably through collaborative sensing [62].

3.2.4 External Sensing

In external sensing, an external agent performs the sensing and broadcasts the

channel occupancy information to cognitive radios. The main advantages are over-

coming hidden primary user problem and uncertainty due to shadowing or fading.

The spectrum efficiency is increased as the CR don’t spend time for sensing. Also,

it is power efficient as the sensing terminal need not be mobile and not necessar-

ily powered by batteries [2]. External sensing is one of the methods proposed for

identifying primary users in IEEE 802.22 standard [45].

3.3 How to Sense?

There are numerous methods proposed by various researchers on how to sense

the spectrum. The following sections first discuss some previous techniques used
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for spectrum sensing. Then spectrum sensing using machine learning, specifically

unsupervised learning, is explored in great detail.

3.3.1 Transmitter-based Sensing

Transmitter detection approach is based on the detection of the weak sig-

nal from a primary transmitter through the local observations of secondary users.

Three schemes are generally used for the transmitter detection. In the following

subsections, matched filter detection, energy detection, and cyclo-stationary feature

detection techniques are discussed.

3.3.1.1 Matched Filtering

A matched filter is an optimum receiver for an AWGN channel [63]. In cogni-

tive radios the matched filter is also an optimum method for detection of primary

user when transmitted signal is known [63]. However, one requires exact information

about signal transmitted, such as its bandwidth, operating frequency, and modula-

tion type. With the advantage of having the short time to achieve probability of

miss detection [64] the main disadvantage is its implementation complexity [52] and

before-hand knowledge of signal. This is still possible since most primary users have

pilots, preambles, synchronization words or spreading codes that can be used for

coherent detection [52]. Some examples are: TV signal has narrow-band pilot for

audio and video carriers; CDMA systems have dedicated spreading codes for pilot

and synchronization channels; OFDM packets have preambles for packet acquisition
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[52]. Another disadvantage of match filtering is large power consumption as various

receiver algorithms needs to be executed.

A typical match filter detector for spectrum sensing is shown in Figure 3.2

[65]. Let the sample received signal y(n) at the CR user be

y(n) = θhp(n) + w(n), 0 ≤ n ≤ N − 1 (3.1)

where p(n) denote the pilot sequence, w(n) denote the white noise, h denote the

quasi-static block fading channel from the primary transmitter to the CR user, and

θ = 0 and θ = 1 denote the absence and presence of the primary signal, respectively.

Define

Pp =
1

N

N−1
∑

n=0

|p(n)|2 (3.2)

as the average power of the pilot signal. Then the instantaneous SNR within the

current detection period is given by

γ =
|h|2Pp

σ2
n

(3.3)

where σ2
n denotes the noise power.
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and makes decision accordingly as

θ =















H1, if Y > λ

H0, if Y < λ

(3.6)

where the threshold λ is chosen to satisfy a target false probability. In order to keep

computation simple and mathematically tractable an AWGN channel is selected.

Under this assumption, it is shown in [65], the test statistics of the MF detector Y

follows a central chi-square distribution with two degree of freedom under H0 and a

non-central chi-square distribution with two degree of freedom and a non-centrality

parameter µ = 2Nγ under H1, i.e.

fy(Y ) ∼















χ2
2, H0

χ2
2(µ), H1

(3.7)

based on which the false-alarm probability and the detection probability for a given

threshold can be obtained [65].

3.3.1.2 Energy Detector Based Sensing

A simple approach as compared to match filtering is to perform non-coherent

detection through energy detection (ED). The signal is detected by comparing the

output of energy detector with a threshold which depends on noise floor. It is one
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of the most common way to sense the spectrum because of its low implementation

and computational complexities. Also, the receiver does not need to know any thing

about the received signal’s characteristics.

There are several drawbacks of energy detectors that might diminish their

simplicity in implementation. First, a threshold used for primary user detection is

highly susceptible to unknown or changing noise levels. Second, energy detector

does not differentiate between modulated signals, noise and interference. Since, it

cannot recognize the interference, it cannot benefit from adaptive signal processing

for canceling the interferer. Lastly, an energy detector does not work for spread

spectrum signals: direct sequence and frequency hopping signals, for which more

sophisticated signal processing algorithms need to be devised [52].

To detect the primary signal by the energy detector in AWGN channel is to

distinguish between the following hypotheses:

y(t) =















i(t) + w(t), H0 SignalAbsent

s(t) + i(t) + w(t), H1 SignalPresent

(3.8)

where y(t) is the received signal at the cognitive radio, s(t) is the transmitted signal

from the primary transmitter, i(t) is interference, and w(t) is the additive white

Gaussian noise (AWGN). H0 and H1 denote the hypothesis corresponding to the
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absence and presence of the primary signal, respectively [65]. An energy detector

can be implemented as in Figure 3.3 [65, 66]. The spectral component on each

spectrum subband of interest is obtained from the fast Fourier transform (FFT) of

the sampled received signal. Then the test statistics of the ED is obtained as the

observed energy summation within M consecutive segments, i.e.,

Y =



























M
∑

m=1

|W (m)|2, H0

M
∑

m=1

|S(m) + W (m)|2, H1

(3.9)

where S(m) and W (m) denote the spectral components of the recieved primary sig-

nal and the white noise on the subband of interest in the mth segment, respectively.

The decision of the ED regarding the subband of interest is given by

θ =















H1, if Y > λ

H0, if Y < λ

(3.10)

where the threshold λ is chosen to satisfy a target false alarm probability. Once

λ is determined, the detection probability can be obtained [65]. In ED, processing

gain is proportional to FFT size N and observation/averaging time T. Increasing

N improves frequency resolution which helps narrow band signal detection. Also,

longer averaging time reduces the noise power thus improves SNR.

3.3.1.3 Cyclostationary-Based Sensing

Modulated signals are in general coupled with sine wave carriers, pulse trains,

repeating spreading, hoping sequences, or cyclic prefixes which result in built-in pe-
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riodicity. Even though the data is a stationary random process, these modulated

signals are characterized as cyclostationary, since their statistics, mean and autocor-

relation, exhibit periodicity. This periodicity is typically introduced intentionally in

the signal format so that a receiver can exploit it for: parameter estimation such

as carrier phase, pulse timing, or direction of arrival. This can then be used for

detection of a random signal with a particular modulation type in a background of

noise and other modulated signals.

Common analysis of stationary random signals is based on autocorrelation

function and power spectral density. On the other hand, cyclostationary signals

exhibit correlation between widely separated spectral components due to spectral

redundancy caused by periodicity [67]. The distinctive character of spectral redun-

dancy makes signal selectivity possible. Signal analysis in cyclic spectrum domain

preserves phase and frequency information related to timing parameters in modu-

lated signals [67]. As a result, overlapping features in the power spectrum density

are non overlapping feature in the cyclic spectrum. Different types of modulated

signals (such as BPSK, QPSK, SQPSK) that have identical power spectral density

functions can have highly distinct spectral correlation functions [52]. Furthermore,

stationary noise and interference exhibit no spectral correlation, thus differentiating

modulated signals, interference and noise in low signal to noise ratios [52].

Mathematically cyclostationary detection is realized by analyzing the cyclic

autocorrelation function (CAF) [68] of the received signal, or, equivalently, its two-

dimensional spectrum correlation function (SCF) [69] since the spectrum redun-

dancy caused by periodicity in the modulated signal results in correlation between
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widely separated frequency components [69]. Consider a typical digitally modulated

signal of the form

s(t) =
∑

n

a(n)g(t− nTo − to) (3.11)

where To is the symbol period, to is an unknown timing offset, and g(t) is the shaping

pulse. For simplicity, assume that the sequence a(n) is stationary with zero mean

and variance σ2
a; then the time-varying autocorrelation function (TVAF) of s(t) is

defined as

Rs(t, τ) = E[s(t + τ)s∗(t)]

=
∑

n

σ2
ag(t + τ − nTo − to)g

∗(t− nTo − to)

=
∑

α= k

To

Rα(τ) exp2παt

(3.12)

where

Rα(τ) =



















σ2
a exp2παto

To

∫

G∗(f + α)G(f) exp2πfτ df, α =
k

To

0, otherwise

(3.13)

and G(f) is the Fourier transform of g(t) [65].

The function Rα(τ) is called the CAF and α is called cyclic frequency. As

indicated in [70], the CAF at a given cyclic frequency α determines the correlation

between spectral components of the signal separated in frequency by an amount of

α. In general [69], the CAF of cyclostationary signals is nonzero only for integer

multiples of a fundamental cyclic frequency αo. For the signal model given in [71],

αo = 1/To. Thus, given To, the CAF can be utilized to determine the presence or

absence of the primary signal by evaluating the values of Rα(τ) at corresponding
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cyclic frequencies [65]. In addition to continuous time domain detection, cyclosta-

tionary detection can also be implemented in discrete time domain [65, 68]. Some

common cyclic frequencies for signals of practical interest are [72, 73]:

1. Analog TV signal: It has cyclic frequencies at multiples of the TV-signal hor-

izontal line-scan rate (15.75 KHz in USA, 15.625 KHz in Europe).

2. AM signal: x(t) = a(t)cos(2πfct + φo). It has cyclic frequencies at ±2fc.

3. Pulse modulated (PM) and frequency modulated (FM) signal:

x(t) = a(t)cos(2πfct + φ(t)). It usually has cyclic frequencies at ±2fc. The

characteristics of the spectral-correlation density (SCD) function at cyclic fre-

quency ±2fc depend on φ(t).

4. Digital-modulated signals are as follows:

(a) Amplitude-Shift Keying: x(t) =
∑

∞

n=−∞
anp(t− n△s − to)cos(2πfct + φo).

It has cyclic frequencies at k/△s, k 6= 0 and ±2fc + k/△s, k = 0,±1,±2, . . .

(b) Phase-Shift Keying: x(t) = cos[2πfct +
∑

∞

n=−∞
anp(t − n△s − to)]. For

BPSK, it has cyclic frequencies k/△s, k 6= 0 and±2fc+k/△s, k = 0,±1,±2, . . .

For QPSK, it has cycle frequencies at k/△s, k 6= 0.

3.3.1.4 Other Methods

Some other proposed spectrum sensing methods in the literature are based

on waveform sensing [74], radio identification [75], multitaper spectral estimation

[76], wavelet transform based spectral estimation [77], Hough transform [78], neural
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networks [7], statistical features based sensing [79], and time-frequency analysis of

the received signal [44].

3.3.2 Machine Learning-Based Sensing

Spectrum sensing techniques based on machine learning have shown promising

results over traditional spectrum sensing methods. Classification algorithms based

on machine learning techniques fall into one of to major categories: supervised

learning and unsupervised learning. In supervised learning, training data is fed

to the classifier a priori and the training data is annotated as to the class it falls

into. While this type of training often yields the most robust results, access to such

training data can often be impractical. On the other hand, unsupervised learning

does not need any training phase. By learning from signals encountered on the

fly, initial classification results can be more error prone, but as more and more

examples are seen, the classification engine can leverage the wealth of observed data

to robustly classify new signals. To work well, the signal statistics need to be linearly

separable to facilitate use of various clustering algorithms. Machine learning based

sensing techniques are discussed in the following sub sections.

3.3.2.1 Feature Based Signal Classification

Consider a system of machine learning where a series of signal values xn(t) are

presented to a signal classifier, whose goal is to determine whether xn(t) is a primary

user P or secondary user S. If xn(t) is a primary user, then the band it occupies,
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and possibly even several adjacent bands, is off-limits to use by secondary users.

If xn(t) is a secondary user, then these bands may be shared by other secondary

users. This thesis looks at approaches that find the answer to this question in an

unsupervised manner, or without external expert help. It is these approaches that

are more flexible and in turn have more value as a signal classification technique.

Figure 3.4 shows a typical signal feature extractor. Signal features when com-

bined with SDR enables DSA applications. One can look at either the temporal or

spectral, or both, characteristics of the signal. Some of the signal features of interest

are given in the Table 3.1 [80]. These features can be extracted through the analysis

of cyclostationary features or the power spectral density (PSD) of the signals. The

Fast Fourier Transform (FFT) can be used to transform the time-domain signal into

the frequency domain and thus the PSD of the signal can be estimated. PSD can

then be used to extract first-order spectral features such as the bandwidth, received

power, and the roll-off factor [80].

38



Table 3.1: Examples Set of Signal Classification Feature

Signal Feature Feature Type

Received Signal Power Spectral

Baseband Bandwidth Spectral

Roll-off Factor Spectral

Alpha Profile Spectral

Standard Deviation of Amplitude Temporal

Standard Deviation of Phase Temporal

Standard Deviation of Envelope Amplitude Temporal

Standard Deviation of Change in Phase Temporal

Standard Deviation of Absolute Value of Change in Phase Temporal

Nth Order Moment/Cumulant of Amplitude Temporal

Nth Order Moment/Cumulant of Phase Temporal

A. Bayesian Theory Approach

Bayesian Theory of Decision (BTD) is a fundamental tool of analysis in ma-

chine learning. The fundamental idea in BTD is that the decision problem

can be solved using probabilistic considerations. The goal here is to distin-

guish between two classes: primary P and secondary S. Let C = [P, S] be the

set of classes. The correct decision Ĉn is made by maximizing the following

conditional probability:

Ĉn = arg max
C∈[P,S]

P (C|xn(t)) (3.14)

Using the Bayes rule, this is equivalent to:

Ĉn = arg max
C∈[P,S]

P (xn(t)|C)P (C)

P (xn(t))
(3.15)

Ĉn = arg max
C∈[P,S]

P (xn(t)|C)P (C) (3.16)
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Note that in equation (3.15), P (xn(t)) is not part of maximization and is

therefore removed in equation (3.16), it is just a normalization factor ensuring

that the sum of probabilities is one. The a priori probability P (C) can

be computed using prior knowledge of the breakdown between primary and

secondary users in a particular frequency band.

The a posteriori probability P (xn(t)|C) is more difficult to compute. In partic-

ular xn(t) is a vector of large dimension, and the joint probability distribution

across an arbitrarily large-dimension xn(t) and the two classes P and S is

difficult to compute.

B. Features Extraction

The a posteriori probability P (xn(t)|C) can be computed by first projecting

xn(t) into a features space using transform F : C
∞ → R

N . This reduces the di-

mensionality of the problem by examining specific features of xn(t) rather than

xn(t) itself. Now, one can use a classification engine to compute likelihoods

LC(.) of the various classes. Specifically,

LC(F (xn(t))) ∝ P (F (xn(t)|C))

≈ P (xn(t)|C)

(3.17)

In unsupervised learning, one feeds a series of feature vectors Fn = F (xn(t))

into the classification engine, and it then outputs class P or S based on its

acquired knowledge. At no point one provides any annotated training data to

the classifier that helps it make decisions about which points belong to which

class.
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3.3.2.2 Classification Using Self Organizing Maps

Self organizing map (SOM) [27] is a commonly used algorithm for unsupervised

learning. Its a type of neural network where individual weights are evolved

to fit the input data. With this approach an input vector is presented to the

network and the output is compared with the target vector. If they differ, the

weights of the network are altered slightly to reduce the error in the output.

This is repeated many times and with many sets of vector pairs until the

network gives the desired output. A SOM learns to classify the training data

without any external supervision whatsoever. A SOM does not need a target

output to be specified unlike many other types of network. Instead, where

the node weights match the input vector, that area of the lattice is selectively

optimized to more closely resemble the data for the class the input vector is

a member of. From an initial distribution of random weights, and over many

iterations, the SOM eventually settles into a map of stable zones. Each zone

is effectively a feature classifier, so each graphical output is a type of feature

map of the input space. Any new, previously unseen input vectors presented

to the network will stimulate nodes in the zone with similar weight vectors.

Training occurs in several steps and over many iterations:

Learning Algorithm:

(a) Each node’s weights are initialized. Consider l number of neurons with

m dimensional weight vector wj = [w1, w2, ..., wm], where j = 1, 2, ..., l.
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Initialize the parameter t, which is a count of iterations:

t = 0

(b) Consider an m dimensional input vector x chosen at random from the

training set X = [x1, ...,xl] and presented to the lattice.

(c) Every node is examined to calculate which one’s weights are most like

the input vector. The closest weight vector to input vector, in terms of

distance, is commonly known as winning neuron denoted as

s(x) = arg minj‖x−wj‖2 (3.18)

(d) The radius of the neighborhood of the winning neuron is now calculated.

This is a value that starts large, typically set to the ’radius’ of the lat-

tice, but diminishes at each time-step. So typically each weight vector is

adapted according to:

∆wr = ǫ(t)h(d1(r, s))(x−wr) (3.19)

where:

h(d1(r, s)) = exp
(−d1(r, s)

2

2σ(t)2
) (3.20)

ǫ(t) = ǫi

(ǫf

ǫi

)
t

tmax (3.21)

σ(t) = σi

(σf

σi

)
t

tmax (3.22)

In equation (3.20), h(.) is a Gaussian neighborhood function and d1(r, s)

is a function that depends on the Eucledian distance between units r and
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s that are images of weight vectors wr and ws on the grid, respectively.

In equation (3.21), ǫi and ǫf correspond to initial and final values of the

learning rate and tmax is the total number of iterations. In equation

(3.22), σ(t) is time varying variance, by time varying it means that σ(t)

varies with number of iterations, and as the number of iteration increases

σ(t) decreases and thus the neighborhood shrinks. σ(t) is defined in

equation (3.22), where σi and σf correspond to initial and final variance

values.

(e) Each neighboring node’s (the nodes found in step 4) weights are adjusted

to make them more like the input vector. The closer a node is to the

winning neuron, the more its weights get altered.

(f) Increase the time parameter t:

t = t + 1

(g) If t < tmax go to step 2 [24, 81].

Imagine neurons ni located on a lattice in a one or two-dimensional space,

called map space. Let ni represent the location in that space of the neuron.

Each neuron has an associated weight vector wi ∈ R
N which is a point in

weight space. These neurons serve to map points from the N-dimensional

weight space to the low-dimensional map space. For each input feature vector

Fn, the first step in classification is to select the neuron with closest weight

vector. In particular,

ĵ = arg minj‖Fn − wj‖2 (3.23)
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Now, weight vectors of all neurons are updated, where the magnitude of the

the update is a function of the distance between the neuron and nĵ :

wi ← wi + ηnai,ĵ(Fn − wi) (3.24)

where ai,ĵ is an activation metric based either on Euclidean or link distance

(e.g. aii = 1, aij = 0.5 if i and j are neighbors, and otherwise aij = 0), and ηn

is an exponentially-increasing time metric for some time-constant τ .

ηn = ηoe
n

τ (3.25)

The definition of aij means that weight vector updates will most influence the

selected neuron and its neighbors. The definition of ηn means that the more

samples fed into the system, the less the system will update its weight vectors.

This damping effect allows convergence. The values ηo and τ affect this con-

vergence rate. Initial values for weight vectors wi can be selected randomly

using a uniform distribution, a rough approximation of the weight space prob-

ability distribution, or they can be selected based on initial feature vectors.

In particular, for this last approach assume feature vectors F1, F2 · · ·Fn are

known, where n ≥ N . This can be placed into a matrix F as follows:

F =

























F1

F2

...

Fn

























(3.26)

From F one can compute its eigenvalues λ1, λ2, . . . λN and eigenvectors e1, e2, . . . , eN .

Assuming neurons are in a two-dimensional space, and given λj and λk are
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the two largest eigenvalues, ej and ek are the principle eigenvectors that span

a two-dimensional space best fit for the original N -dimensional data. For

lattice point ni one can compute its initial weight vector wi by taking ni’s

two-dimensional coordinate on the plane spanned by ej and ek and projecting

it into the higher-dimensional R
N space. If the two signal classes P and S have

sufficiently separable signatures in the weight space R
N , the weight vector of

map neurons in cluster together after . By looking at weight vector densities

across the lattice, the clusters can be identified, and decision boundaries can

be placed between them. For each new signal received, the map can be used

to classify it, while simultaneously updating itself with the new information.

Application of SOM for Spectrum Sensing:

This algorithm is useful for scanning an entire band of frequency of interest,

locating energy, and then using features from that energy to feed into an

untrained classifier. Since, this algorithm does not need any training data, the

spectrum sensing is performed in a quick and efficient manner.
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Chapter 4

Security in Cognitive Radios

Cognitive radio paradigm introduces entirely new classes of security threats

and challenges different than those frequently encountered in a traditional

wireless network. This is because of additional features the CR offers, such

as sensing, geolocation, spectrum management, access to policy database etc.

Each of these functions and processes need to be accessed for potential vul-

nerabilities, and security mechanism needs to be established. Thus, providing

security in a CR environment is far more challenging as compared to tradi-

tional wireless networks. However, this issue needs to be addressed in order

to make CR a long-term commercially-viable concept. This chapter discusses

the topics of wireless security in cognitive radio networks, delineating the key

challenges in this area. Some of the fundamental questions which arise in CR

security are [82]:

(a) What are the potential threats to a cognitive radio network?

(b) What are the potential attacks against cognitive radio network?

(c) What is the likelihood of these threats and attacks?

(d) What is the potential consequence of these attacks?
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Some of the fundamental blocks of communication security are availability, in-

tegrity, identification, authentication, authorization, confidentiality, and non-

repudiation. So besides providing typical traditional forms of security, cogni-

tive networks must provide enhanced security mechanisms for various cognitive

functions it supports. As with any other wireless network, the security of CR

at each layer is critical. Muhammad in [83] discusses CR security at the physi-

cal layer, data-link layer, network layer, transport layer, and application layer.

He also discusses some cross-layer attacks against CR networks. In this the-

sis, the focus is on spectrum sensing security. Ensuring the trustworthiness of

spectrum sensing process is an important problem that needs to be addressed.

This chapter first discusses some building blocks of security applicable to cog-

nitive radios, then spectrum sensing security is discussed in detail.

4.1 Building Blocks of Communication Security

In this section, some building blocks of communication security are introduced

and how these building blocks are applied in cognitive radio networks are

discussed.

4.1.1 Availability

One of the fundamental requirements for any communication device and/or

network is its availability for use at all times. Most of the attacks in com-

munications like the denial-of-service (DoS) attacks, jamming attacks, buffer
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over flow attacks on network queues are all targeted towards rendering the

network unavailable either temporarily or permanently [83]. In the case of

CRs, network availability means the ability of primary user and secondary

user to access the spectrum. For the primary user, availability refers to being

able to transmit in the licensed band without interference from the secondary

user. On the other hand, availability for secondary users is the existence of

chunks of spectrum where it can transmit without causing interference to pri-

mary user. Security mechanisms should ensure spectrum availability for both

primary and secondary users.

4.1.2 Integrity

Data in a network needs to be protected from malicious modification, insertion,

deletion, or replay. Integrity assures that the data received is exactly as sent

by an authorized entity. Data integrity is extremely important in wireless

networks, where unlike wired networks the wireless medium is easily accessible

to intruders. In a CR, data integrity means that only authorized primary and

secondary users are able to communicate [83].

4.1.3 Identification

Identification is one of the main security requirements for any communication

device. Every device must have a unique identifier. In a CR, the secondary

users must have a tamper-proof identification mechanism.
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4.1.4 Authentication

Authentication is assurance that the communication entity is the one that it

claims to be. The objective of authentication is to prevent unauthorized users

from gaining access to the system. From the service provider’s perspective,

authentication protects the service provider from unauthorized intrusions into

the system. In CR networks, there is an inherent requirement to distinguish

between primary and secondary users. Therefore, authentication can be con-

sidered as one of the basic requirements for cognitive radio networks [83].

4.1.5 Authorization

In DSA environment, secondary users are authorized to use the channel when

its not being used by the primary user or if white spaces are available. They

can use the spectrum conditioned that they won’t cause any interference to

the primaries’ transmission. If a secondary user (possibly malicious) is caus-

ing interference to primary user, it should be stopped. But, it is difficult to

pinpoint exactly which secondary user is causing interference and even more

so in a distributed setting [83].

4.1.6 Confidentiality

Confidentiality and integrity are linked very closely. While integrity assures

that data is not maliciously modified in transit, confidentiality assures that
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the data is transformed in such a way that it is unintelligible to an unautho-

rized (possibly malicious) entity. This is commonly done by ciphering and

encrypting the data with a secret key which is shared only with the recipient.

The error-prone and noisy nature of wireless channel poses a unique challenge

to both data confidentiality and integrity, since they rely on ciphers which are

sensitive to channel errors and erasures. This issue is even more pronounced

in CR networks, where the secondary user’s access to network is opportunistic

and spectrum availability is not guaranteed [83].

4.1.7 Non-repudiation

Non-repudiation techniques [84] prevent either the sender or receiver from

denying a transmitted message. Therefore, when a message is sent, the receiver

can prove that a message was in fact sent by the alleged sender. Similarly, when

a message is received, the sender can in fact prove that the data received was

by the alleged receiver. In CR setting, if malicious secondary users violating

the protocols are identified, non-repudiation techniques can be used to prove

the misbehavior and disassociate/ban the malicious user from the network

[83].

4.2 Spectrum Sensing Security

An important feature of CR is its ability to sense the spectrum. It should

be able to distinguish primary user signals from the secondary user signals in
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a robust way. The secondary users are permitted to operate in the licensed

band only on a non-interference basis to primary users. Since wireless commu-

nication is of bursty nature, the usage of licensed spectrum bands by primary

user may be sporadic. So a CR must constantly monitor for the presence of

primary user signals in the current operating band and candidate bands. If a

secondary user detects the presence of primary user in the current band it must

vacate the band for the primary user and switch to one of the fallow bands.

On the other hand, if the secondary user detects the presence of an unlicensed

user, it invokes a coexistence mechanism to share spectrum resources [85, 86].

4.2.1 Primary User Emulation

In a hostile wireless environment a malicious user may modify the air inter-

face to mimic a primary user’s signal characteristics. This results in secondary

users identifying the malicious user as a primary user, thus, vacating occupied

spectrum band for the primary user. In this way the malicious user gets un-

rivaled access to the primary user’s spectrum band. In literature this kind of

attack against cognitive radio networks is considered as Primary User Emu-

lation (PUE) [87]. The PUE attack can be launched while the spectrum is

being sensed by energy detection or cyclostationary signal features are used

for primary user’s signals.

When energy detection is used, a secondary user can recognize other secondary

users but is unable to recognize primary user. So, when a secondary user
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detects a signal that it recognizes, it labels it as of secondary user; otherwise

it determines that signal is that of a primary user. The detection of primary

user’s signal is very simple using this approach. Thus, a selfish or malicious

secondary user can easily exploit the spectrum sensing process.

When cyclostationary feature detection is used, in which intrinsic characteris-

tics of primary user’s signals are used to distinguish from those of secondary

users, an attacker can still make its signals indistinguishable from primary

user signals by transmitting signals that have same characteristics as primary

signals. If an attacker uses such a mechanism, CR that receive the signal will

falsely identify the malicious user’s (attacker) signal as that of primary user.

The aim of PUE attacks is to disrupt the communication and use the spectrum

resources that could have been used by legitimate secondary users. Depending

on the motivation behind attack, Ruiliang et al in [87] classify them as either

a selfish PUE or a malicious PUE attack.

• Selfish PUE Attacks: In this attack, an attackers objective is to maxi-

mize its own spectrum usage. When selfish PUE attackers detect a fallow

spectrum band, they prevent other secondary users from competing for

that band by transmitting signals that emulate the signal characteristics

of primary user signals. This attack is most likely to be carried out by

two selfish secondary users whose intention is to establish a dedicated

link [87].

• Malicious PUE Attacks: In this attack, the objective is to obstruct
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the DSA process of legitimate secondary users i.e. prevent legitimate sec-

ondary users from detecting and using fallow licensed spectrum bands,

thus causing denial of service. Unlike a selfish attacker, a malicious at-

tacker does not necessarily use fallow spectrum bands for its own commu-

nication purposes. It is quite possible for an attacker to simultaneously

obstruct the DSA process in multiple bands by exploiting two DSA mech-

anisms implemented in every CR. The first mechanism requires a CR to

wait for a certain amount of time before transmitting in the identified

fallow band to make sure that the band is indeed unoccupied. The sec-

ond mechanism requires a CR to periodically sense the current operating

band to detect primary user signals and to immediately switch to another

band when such signals are detected. By launching a PUE attack in mul-

tiple bands in a round-robin fashion, an attacker can effectively limit the

legitimate secondary users from identifying and using fallow spectrum

bands [87].

In order to mitigate these attacks against spectrum sensing, Ruiliang et al in

[87] propose a transmitter verification scheme, called localization-based defense

(LocDef ), which utilizes both signal characteristics and location of the signal

transmitter to verify primary signal transmitters. The localization scheme

utilizes an underlying wireless sensor network (WSN) to collect snapshots

of received signal strength (RSS) measurements across a CR network. By

smoothing the collected RSS measurements and identifying the RSS peaks,
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transmitter location is estimated.

4.2.2 Attacks Against Cooperative Sensing

Another form of security threat occurs when using cooperative spectrum sens-

ing [55]. Although cooperative spectrum sensing has promising advantages in

terms of accurate sensing of the spectrum, but, if a CR reports false informa-

tion the whole system may be jeopardized in a way that too many incorrect

sensing decisions would occur thus increasing the likelihood of false detection.

It is challenging to devise robust algorithms for cooperative spectrum sensing

which are attack proof.

4.2.3 Threats Against Self-Coexistence Mechanisms

The coexistence between primary (incumbent) users and secondary users is

referred to as incumbent coexistence. On the other hand, coexistence between

secondary users in different wireless radio access network (WRAN) cells is

referred to as self-coexistence [88]. Self-coexistence mechanisms are needed

in overlapping coverage areas of CR networks to minimize self interference

and utilize spectrum efficiently. Unfortunately, adversaries can modify/forge

self-coexistence control packets to exploit self-coexistence mechanisms, which

can result in drastic reduction of network capacity. What makes the task of

protecting self-coexistence control packets, using conventional cryptosystems,

difficult is the need to use an inter-operator key management system. It is
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likely that the networks that contend for spectrum (via self-coexistence mech-

anisms) will be managed by different wireless service operators. Designing and

maintaining an inter-operator key management system could be complex and

expensive [87].

4.3 Other Security Threats in CR Networks

In addition to spectrum access-related security threats, software-centric signal

processing by (software-based) CR systems also raises new security implica-

tions. For instance, the download process of the radio software needs to be

secured. Moreover, the radio software itself needs to be tamper resistant once

it is downloaded on the radio terminal so that software changes cannot be

made to cause a radio to operate with parameters outside of those that were

approved [87].
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Chapter 5

Security Threats in Machine Learning based Spectrum Sensing

The DSA is an emerging technology which can solve the problem of spectrum

scarcity. Machine learning can be used to improve the performance and ro-

bustness of DSA [31]. Previous work shows the sensitivity of cognitive radios

against emulation attacks [87, 89]. In supervised or unsupervised machine

learning environment a malicious user can manipulate the feature extractors

and classifier engines to affect their output and thus results in the misclassi-

fication of the intended signals [80, 90]. Chapter 4 discussed importance of

security when using machine learning for DSA. Here the focus is on the role of

security in an unsupervised machine learning environment and this thesis ex-

plores some possible types of security vulnerabilities against signal classifiers.

5.1 Threats to Self Organizing Maps

This section deals with a generic self-organizing map whose goal is to distin-

guish between two classes. First, analytical derivation of the feasible set of

input signals that would inductively manipulate the decision regions is done,

and then a more complex example through simulation is demonstrated.
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5.1.1 Analytical Derivation

Consider, for simplicity, a one-dimensional map. After n − 1 iterations from

previous input data, the weight vectors for neurons ni are wi, respectively, are

updated. Our goal is to create an input vector xn(t) that will cause a neuron

currently on the border between two classes to switch classes. Applying this

technique inductively, an attacker can arbitrarily shift the decision region be-

tween primary and secondary users, causing more signals to be classified as

primary, decreasing competition for spectral resources. Lets assume neurons

n1, . . . , nl are linearly arranged and evenly spaced, and without loss of gener-

ality, ni = i. Assume nodes n1, . . . , nl−i are classified as primary users, and

nodes ni, . . . , nl are classified as secondary users. Our goal is to cause ni to be

classified as a primary user. To accomplish this, the input signal must have a

feature vector closer to wi than any other weight vector. This introduces our

first constraint:

‖F (xn(t))− wi‖2 < ‖F (xn(t))− wj‖2 ∀ j 6= i (5.1)

where wi and wj are the i-th and j-th weight vectors, respectively. In other

words, xn(t) must have a feature vector that causes ni to be the winning

neuron. Let χ1 be the space of feasible vectors xn(t) that satisfy this space.

Next, the map will update the weight wi, and the goal is for this update δi to

cause neuron ni to shift from being classified as secondary to primary. However

this update also affects ni’s neighbors. For ni and its neighbors, the update is
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defined as

δj = ηnaj,i(F (xn(t))− wj) (5.2)

Assuming activation values of 1 for the winning neuron, 0.5 for its neighbors,

and 0 for all other neurons, the result is following:

δi−1 = 0.5ηn(F (xn(t))− wi−1) (5.3)

δi = ηn(F (xn(t))− wi) (5.4)

δi+1 = 0.5ηn(F (xn(t))− wi+1) (5.5)

If ni is on the decision boundary and currently in the same class as ni+1, it

must be closer in weight space to ni+1 than ni−1. To change this behavior, the

new weight vector need to be closer to ni−1. Quantitatively, this means

‖(wi + δi)− (wi−1 + δi−1)‖2 < ‖(wi + δi)− (wi+1 + δi+1)‖2 (5.6)

substituting equation (5.5) into equation (5.6) results in

‖(1− ηn)wi − (1− 0.5ηn)wi−1 + 0.5ηnF (xn(t))‖2

< ‖(1− ηn)wi− (1− 0.5ηn)wi+1 + 0.5ηnF (xn(t))‖2 (5.7)

This is the second constraint. Let χ2 be the feasible set of signals xn(t) that

satisfy this constraint. If χ1 ∩ χ2 6= φ, then a signal exists that will alter the

decision boundaries.

5.2 Simulation Scenario

The three types of attacks explored in this thesis, connection attack, point-

cluster attack, and random noise attack, are defined in the following sections.
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(a) Connection Attack

The connection attack aims to link two signal classes together by the use

of chaff signals. The purpose is to confuse the signal classifier and force

it to draw inaccurate decision boundaries. So chaff points are added

which have means collinear with µ1 and µ3, and are added at random

points in between the two. Their goal is to confuse the classifier and

case points with mean µ3 to be in the same output class as points with

mean µ1, rather than µ2. This confuses the signal classifier and it draws

boundaries showing adversarial user to be the primary user and all others

to be secondary user, thus showing that in a self-organizing map the

decision boundaries can be manipulated by an adversary if it presents

known feature values.

(b) Point Cluster Attack

In the point cluster attack many chaff points are added all in one place, the

idea is to confuse the signal classifier and force it to draw decision bound-

aries showing adversarial user to be the primary user. This approach is

successful, since in many classification algorithms, say, K-means, the goal

is to try to find the center which is the mean position of all the samples in

the class. The presence of many chaff points at a particular point drags

the mean of adjacent classes closer to itself. In practice if too many sig-

nals are produced with the same statistical properties the signal classifier

can be forced to term this one as a single independent class and all other
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classes to be a second class. Thus an adversary producing large amount

of signals can learn the environment of cognitive radio thus compromising

the security of the primary user.

(c) Random Noise Attack

In the random noise attack chaff points are added randomly all over the

map space. The idea is to confuse the signal classifier so that it draws the

decision boundaries randomly, because after the training phase the the

randomly added chaff signals will try to get close to the already present

signals thus forming small clusters of neurons in the weight space close

to them. The randomness in the decision boundaries is in the sense that

some times it classifies adversarial user to be the primary user and some-

times it draws boundaries accurately. Through simulation it is shown

that this type of attack is also strong enough to confuse the signal clas-

sifier and thus, when effective, draws inaccurate decision boundaries.

5.3 Monte Carlo Simulation

This section demonstrates the efficacy of the attack on features generated from

real signal data. Signal features which are consistent with real signal, namely

standard deviation of time-domain signal, standard deviation of time-averaged

time-domain signal, and the standard deviation of the derivative of the signal

are used. It is assumed that the primary user is a frequency-modulated (FM)

analog signal, secondary users are binary phase-shift keying (BPSK) and ad-
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Figure 5.1: (a) Weight vectors in a 3-dimensional weight space. (b) Neuron densities

in a 3-dimensional density space.

versary users are 16-point quadrature amplitude modulation (16-QAM) [34].

This thesis starts the discussion by explaining the significance of results in

the presence of no attack, connection attack, and point cluster attack in both

adjacent and equilateral adversaries case. Finally the random noise attack and

its significance in the two different cases of adversarial users is explained. This

thesis shows numerically the error rates for adjacent adversaries and equilat-

eral adversaries in the presence of no attack, connection attack, point cluster

attack, and the random noise attack. This thesis also demonstrates the rela-

tionship between the strength of the attacks on the signal classifier and the

number of chaff signals.

In order to demonstrate the efficacy of decision boundary movement for a

self organizing map with a two-dimensional map space this thesis uses the
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MATLAB Neural Network Toolbox to implement the self-organizing maps.

The Monte Carlo simulation executes the following scenario 200 times and

averages the final result in order to show misclassification rates. The reason

to run the simulation 200 times and not more is that after a certain number of

training the weight vectors do not change much and a certain optimal training

threshold is achieved.

A network with a two-dimensional map space and three-dimensional weight

space is created. The weight space could be arbitrarily large, but for the pur-

poses of visualization, three dimensions were used. The weight space spans

values [0, 10] in each dimension. Input data samples are taken from two Gaus-

sian distributions. The means of the two Gaussian distributions are chosen in

such a way so that in one set the adversaries are adjacent to each other and

in the other they are equidistant.

Adjacent Adversaries:

µ1 = (3,3,3), µ2 = (7,7,7), µ3 = (5,8,7)

Equilateral Adversaries:

µ1 = (3,3,3), µ2 = (4,7,5), µ3 = (5,3,7)

where µ1, µ2 and µ3 correspond to the means of primary, secondary, and

adversarial users respectively. The standard deviation is 0.25. The network is

first trained to input samples, this case uses training data of 600 samples, and

then runs the classification algorithm and determines primary and secondary

users through the decision boundary algorithm. The input points are shown
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as blue dots in Figure 5.1(a). The network is trained to the input samples

and neuron weights are shown in red. The associated neuron densities are

depicted in Figure 5.1(b). There is a clear decision boundary in dark blue

that separates the primary from secondary users.

5.3.1 Performance of Signal Classifiers

In an unsupervised learning environment, the signal classifiers are very sen-

sitive to an attack because they update themselves when new data arrives

so an adversary can manipulate the output of the classifier in the long run

[80]. This thesis used SOM as a signal classifier and K-means and hierarchical

clustering algorithms. For K-means, K = 2 is used for two classes of primary

and secondary users, in the hierarchal algorithm classification on the basis of

weighted, average, complete, single and ward algorithms was explored. The

’weighted’ uses the weighted average distance, ’average’ uses the unweighted

average distance, ’complete’ uses the furthest or largest distance, ’single’ uses

the shortest distance, ’ward’ uses the inner squared distance among the weight

vectors in the two clusters, note that this thesis takes into account only the

Euclidean distance and the hierarchical tree structure is monotonic. The per-

formance of these algorithms is evaluated under no attack. Table 5.2 gives

the statistics with adjacent adversaries. Notice that the ’single’ hierarchical

algorithm is more prone to attack since even under no attack it draws incor-

rect decision boundaries 6% of the time. Table 5.1 evaluates the performance
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Table 5.1: Performance of Classification Algorithms under No Attack with equilat-

eral adversaries

Classification Algorithm Pri→Sec Sec→Pri Adv→Pri

K-means 0 0.56 0.30

Weighted 0 0.54 0.44

Average 0 0.84 0.16

Complete 0 0.90 0.10

Single 0 0.68 0.56

Yard 0 0.70 0.30

with equilateral adversaries, keeping in view the average performance of these

algorithms under this situation one finds that K-means and ’weighted’ per-

form better and are less prone to attack on the average as compared to other

classification algorithms used. This work uses these two classification algo-

rithms, K-means and weighted, in order to evaluate their performance under

no attack, connection attack, point cluster attack and random noise attack.

5.3.2 No Attack

Figures 5.2 and 5.3 gives a general overview of how K-means behaves in the

case of adjacent adversaries and equilateral adversaries, respectively, with no

attack. K-means is able to accurately draw boundaries for the primary and

secondary users under no attack. Table 5.4 shows that the K-means signal
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Table 5.2: Performance of Classification Algorithms under No Attack with adjacent

adversaries

Classification Algorithm Pri→Sec Sec→Pri Adv→Pri

K-means 0 0 0

Weighted 0 0 0

Average 0 0 0

Complete 0 0 0

Single 0 0.06 0.06

Yard 0 0 0

classifier is highly successful in drawing accurate decision boundaries under

no attack with adjacent adversaries but with equilateral adversaries the per-

formance of K-means degrades and it classifies adversary user to be primary

user 35% of the time (see Table 5.5) [35]. So even under no attack the false

positive rate is much high for K-means under the equilateral adversaries case.

The weighted hierarchical clustering algorithm performs much like K-means

when used with adjacent adversaries (see Table 5.6), but with equilateral ad-

versaries it has a high false positive rate as compared to K-means under similar

situation (see Table 5.7) [35].
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Table 5.3: Adv→Pri error rates for different attack densities using hierarchical clus-

tering with equilateral adversaries

Attack Type 0 200 400 600

Point Cluster 0 0.91 0.96 0.98

Connectivity 0.44 0.52 0.58 0.81

Random Noise 0.39 0.46 0.50 0.54
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Figure 5.2: Weight vectors and neuron densities for adjacent adversaries without an

attack present
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Figure 5.3: Weight vectors and neuron densities for equilateral adversaries without

an attack present

Table 5.4: Error types and rates for different attack types using K-means clustering

with adjacent adversaries

Error Type None Connect Cluster Noise

Pri→Sec 0 0 0 0

Sec→Pri 0 0 0.35 0

Adv→Pri 0 0 0.38 0
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5.3.3 Connection Attack

The connection attack aims to confuse the signal classifier by presenting signal

features similar to that of primary user. This attack uses chaff signals which

have means collinear with the means of primary user and adversarial user.

Actually it demonstrates that if the adversarial user knows signal features

of primary user this type of attack can be launched against signal classifiers

[34]. Figures 5.4 and 5.5 show the connection attack in the case of adjacent

and equilateral adversaries, respectively [35]. Observe the chaff signals which

are added to fool the signal classifier. Compare Figures 5.4(b) and 5.5(b)

with Figures 5.2(b) and 5.3(b). Notice the decision boundaries before attack,

Figures 5.2(b) and 5.3(b), and after attack, Figures 5.4(b) and 5.5(b). The

alteration in the decision boundaries of primary and adversary user shows

the efficacy of the connection attack. Next, the performance of K-means and

weighted algorithms under adjacent and equilateral adversaries is evaluated.

Tables 5.4 and 5.6 show that connection attack has no impact on clustering

algorithms with adjacent adversaries, however, Tables 5.5 and 5.7 show that

with equilateral adversaries the connection attack has high error rate. The

connection attack is more powerful if weighted algorithm is used because then

it will classify adversary to be primary 75% of the time but with K-means the

error rate is 36%. So it makes sense to use that clustering algorithm which is

less prone to attakcs on signal classifiers i.e. K-means in this case.
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Figure 5.4: (a) Connection attack when adjacent adversarial user adds chaff signals.

(b) Neuron density map after the connection attack.
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Figure 5.5: (a) Connection attack when equilateral adversarial user adds chaff sig-

nals. (b) Neuron density map after the connection attack.
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Table 5.5: Error types and rates for different attack types using K-means clustering

with equilateral adversaries

Error Type None Connect Cluster Noise

Pri→Sec 0 0 0 0

Sec→Pri 0.38 0.33 1 0.36

Adv→Pri 0.35 0.36 1 0.58

5.3.4 Point Cluster Attack

The point cluster attack in the adjacent adversaries case is shown in Figure 5.6.

Notice the location of the cluster of chaff points. The chaff points are added

with mean (9,9,9) and its adjacent signals have means (5,8,7) and (7,7,7),

the classification algorithm lumps these three into a single class because of

their close proximity where as the signal class with mean (3,3,3) are classified

as the other class. The neuron density map has a dense region showing the

presence of many chaff points. Figure 5.7 shows the point cluster attack in the

equilateral adversaries case. The means of the signals in this case are (9,9,9)

for chaff signals, and the other three signals have means (3,3,3), (4,7,5) and

(5,3,7). Notice the chaff signals are far from the other signals in the weight

vector map as compared to the adjacent adversaries case. Tables 5.4 and 5.6

suggest that weighted algorithm performs better under point cluster attack

with adjacent adversaries as the error rate it produces is much lower than K-

means, so a weighted clustering algorithm will have better decision power over
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Figure 5.6: Weight vectors and neuron densities for adjacent adversaries under the

point cluster attack

K-means under this attack. Also, Tables 5.5 and 5.7 show that the weighted

algorithm outperforms K-means with equilateral adversaries. Its interesting

to note that K-means completely fails to draw decision boundaries accurately

whereas the weighted algorithm is some-what successful but still has a 98%

error rate.

5.3.5 Random Noise Attack

The random noise attack case is a special case in which the signals generated

have means which are randomly generated using a uniform distribution, in

terms of neural networks this corresponds to neurons all over the weight vector

space. Due to the random nature of these signals the signal classifier finds it

difficult to draw accurate decision boundaries. It is difficult for K-means signal
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Figure 5.7: Weight vectors and neuron densities for equilateral adversaries under

the point cluster attack

classifier to locate the mean of the samples when they are randomly distributed

over the space of signals so it draws the decision boundaries arbitrarily.

Figures 5.8 and 5.9 show the weight vectors and the neuron density map when

a random noise attack is performed on the adjacent and equilateral adversaries

cases respectively. Note that the chaff signals are randomly distributed over

the weight space. After the training phase, they get aligned more close to

the three classes depending upon the orientation of their weight vectors. The

neuron density map shows the two decision regions. Notice that the darker

and more dense areas correspond to our signal classes whereas the less dense

areas are the result of the random chaff signals located arbitrarily. Every

time the decision boundary algorithm runs on this attack it tries to find the

best mean taking in account the random chaff signals present around original
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Table 5.6: Error types and rates for different attack types using hierarchical clus-

tering with adjacent adversaries

Error Type None Connect Cluster Noise

Pri→Sec 0 0 0 0

Sec→Pri 0 0 0.10 0.38

Adv→Pri 0 0 0.11 0.39

classes and splits the decision region into primary and secondary user. Ta-

ble 5.4 shows that the random noise attack has no effect on K-means with

adjacent adversaries but if weighted algorithm is used then poor decision re-

gions are obtained as shown by Table 5.6. Table 5.5 shows that in the case of

equilateral adversaries this attack is successful on K-means. A comparison of

random noise attack in equilateral adversaries case shows that its difficult to

conclude whether K-means is a good algorithm for drawing decision boundary

for primary and secondary users as compared to the weighted algorithm, since

in both cases the error rates are very close.

5.3.6 Effect of Chaff Points

It is interesting to note the behavior of signal classifiers under the point cluster

attack and random noise attack with adjacent and equilateral adversaries by

changing the number of chaff signals. The intensity of attack increases with

the increase of chaff points. This makes sense since by increasing the number
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Figure 5.8: Weight vectors and neuron densities for adjacent adversaries under the

random noise attack
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Figure 5.9: Weight vectors and neuron densities for equilateral adversaries under

the random noise attack

74



Table 5.7: Error types and rates for different attack types using hierarchical clus-

tering with equilateral adversaries

Error Type None Connect Cluster Noise

Pri→Sec 0 0 0 0

Sec→Pri 0.30 0.16 0.85 0.40

Adv→Pri 0.42 0.75 0.98 0.55

of chaff points the clustering algorithms can be forced to draw inaccurate

decision boundaries and thus increasing the probability of error. Table 5.3

demonstrates that the strength of the attack increases regardless of its type

as the number of chaff signals is increased. In Table 5.3 the numbers 0, 200,

400 and 600 correspond to no chaff points, one-third chaff points, two-third

chaff points and full chaff points, respectively. These are derived according to

number of signal points with which network is trained i.e. 600 signal points are

used to train the network and then chaff points are added accordingly. Observe

that the most strong attack comes out to be the point cluster attack, as it has

high probability of error of classifying adversary user to be the primary user

as compared to connection and random noise attack.

5.4 Real Signals: An Example

This section demonstrates the efficacy of the attack on features generated from

real signal data. The scenario is that secondary users wish to distinguish the
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Figure 5.10: Weight vector (neuron) map for BPSK, 16QAM and FM signals

analog primary signal from the digital secondary signals. It is assumed the

primary user is a frequency-modulated analog signal, secondary users are bi-

nary phase-shift keying (BPSK) and adversarial users are 16-point quadrature

amplitude modulation (16QAM). While many different types of feature ex-

tractors are possible, this work selected three that were simple to compute

and could be implemented as simple finite impulse response (FIR) filters. The

first feature is the standard deviation of the time-domain signal itself. The

second feature is the standard deviation of the time-averaged time domain

signal, averaged over 10 samples. The third feature is the standard deviation

of the derivative of the signal. In the end standard deviation of signals filtered

with taps [1], [0.1, 0,1, ... , 0.1], and [1,-1] is computed. For the simulation,

this thesis included small, random sampling and carrier frequency offsets of

the input signals, consistent with an oscillator stability of 20ppm.

As a point of comparison, the USRP and USRPv2 respectively have oscillator
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Figure 5.11: Density map for BPSK and 16QAM signals (notice the clear decision

boundary between primary and secondary users)

stabilities of 50ppm and 2ppm [91]. It was also assumed the signal SNR has

been normalized to approximately 10 dB, and included a scaling variance of

0.1. These random fluctuations in the input signal increase the variance of the

input signal feature distributions in weight space. Figure 5.10 shows the self-

organizing map that was trained to our signal inputs. The three classes are

discernible, though the BPSK and 16QAM classes are close in weight space. In

the associated density plot, boundaries are present between all three classes,

but the strongest boundary is between the FM signals and the BPSK/16QAM

signals. This result is an extension of [31] and demonstrates it is feasible to

use neural networks with unsupervised learning and simple features to classify

signals. The next experiment, demonstrates that the attacker can create input

signals to manipulate the neuron structure. By fabricating signals with the

appropriate feature vectors, the attacker can cause the 16QAM signals to
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Figure 5.12: PSK signal is now a separate class, discernible from FM/QAM class

be lumped in with the FM signals. Given that with the exception of the

computation of standard deviation, the feature transforms are linear, so the

following rough approximation is used.

F (x1(t) + x2(t)) ≈ F (x1(t)) + F (x2(t)) (5.7)

Therefore, if in order to create chaff points to connect two signal classes, one

simply needs to take random linear combinations of their time-domain signals.

In particular if xFM(t) is the time-domain representation of our primary signal,

and xQAM(t) is the time-domain representation of our adversarial secondary

users, then one can create many signals that will generate the appropriate

chaff by computing the following for random δ ∈ unif(0, 1).

xchaff (t) = δxFM(t) + (1− δ)xQAM(t) (5.8)

Figure 5.12 shows this attack. Note that due to the non-linearity of the stan-

dard deviation computation, the chaff points do not linearly connect the FM
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Figure 5.13: Chaff signals connecting two different signal classes i-e FM and 16-QAM

signals, making them as one separate class in the density map

and 16-QAM clusters, but they achieve their end goal, none the less. In fact,

the round-about nature of the points demonstrates the ability to create trails

of chaff points that go around other clusters in feature space. With this at-

tack, this thesis demonstrated the ability to manipulate decision boundaries

and cause clusters of signals to be misclassified in a deterministic way. This

results in a primary user emulation attack where the secondary user need not

mimic the primary users signal.
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Chapter 6

Mitigation and Conclusion

6.1 Mitigation

In the simulations above, there were always two classes i.e. the classification

algorithm considered primary to be primary and all others to be secondary

and grouped them in one class. In reality there are more than two classes

as there can be more than one secondary user. That means each user will

have its own cluster in the feature space. In this situation, a single boundary

separating primary and secondary users is not helpful, in fact, it is problematic

and confusing for the signal classifiers. So, if the estimate of number of classes

is accurate the attacks against the signal classifier can be avoided, as in this

way knowledge about number of classes would be available and a malicious

user won’t be able to fool the signal classifier. X-means algorithm [92] can

be used to estimate the number of classes, or users, present. This algorithm

would be more robust against signal classifier attacks as compared to K means

itself [93].

The attacks against signal classifiers can also be thwarted if the secondary users

know their own signal parameters and primary’s signal parameters. Now, if

the primary and secondary classes are known, the secondary users can use
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this information to perform a sanity check of the output of the unsupervised

clustering algorithm. For example, it could detect primary and secondary user

classes being collapsed down via a point cluster attack, and modify the ap-

proach used in performing the clustering. In many cases, this could simply be

re-execution of the clustering algorithm. This approach could further decrease

the misclassification rates in case of point cluster and connection attacks [93].

6.2 Conclusion

The use of signal classifiers and clustering algorithms for DSA has opened new

frontiers of research in this area. There is a strong need to explore other types

of signal classifiers and decision boundary algorithms which are less prone to

attacks, more robust and efficient for DSA.

This thesis explored three types of attacks against signal classifiers. Self-

organizing map (SOM) was used as signal classifier and K-means and weighted

hierarchical clustering algorithm as decision boundary algorithms. First, it

was shown analytically that this kind of attacks are possible for a simpler

(one-dimensional) case. Then, more complex cases were simulated in Matlab.

Simulations demonstrated the effectiveness of connection, point cluster, and

random noise attack against signal classifiers. This demonstrated the fact that

machine learning environment can be easy to manipulate by an adversary

user, since if it can learn by the environment it can also be taught by the

environment. So, a PUE attack can be launched very easily in this case.
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