Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    IDENTIFICATION OF THE MOLECULAR MECHANISMS OF ZEBRAFISH INNER EAR HAIR CELL REGENERATION USING HIGHTHROUGHPUT GENE EXPRESSION PROFILING

    Thumbnail
    View/Open
    Liang_umd_0117E_11713.pdf (21.72Mb)
    No. of downloads: 266

    supplemental_file_1.txt (28.97Mb)
    No. of downloads: 135

    supplemental_file_2.txt (509.4Kb)
    No. of downloads: 179

    supplemental_file_3.txt (265.0Kb)
    No. of downloads: 178

    supplemental_file_4.txt (7.839Kb)
    No. of downloads: 165

    Date
    2010
    Author
    Liang, Jin
    Advisor
    Popper, Arthur N.
    Metadata
    Show full item record
    Abstract
    All nonmammalian vertebrates studied can regenerate inner ear mechanosensory receptors, i.e. hair cells, but mammals only possess a very limited capacity for regeneration after birth. As a result, mammals suffer from permanent deficiencies in hearing and balance once their inner ear hair cells are lost. The mechanisms of hair cell regeneration are poorly understood. Because the inner ear sensory epithelium is highly conserved in all vertebrates, we chose to study the hair cell regeneration mechanism in adult zebrafish, hoping the results would be transferrable to inducing hair cell regeneration in mammals. We defined the comprehensive network of genes involved in hair cell regeneration in the inner ear of adult zebrafish with the powerful transcriptional profiling technique, Digital Gene Expression (DGE), which leverages the power of next-generation sequencing. We also identified a key pathway, stat3/socs3, and demonstrated its role in promoting hair cell regeneration through stem cell activation, cell division, and differentiation. In addition, transient pharmacological up-regulation of stat3 signaling accelerated hair cell regeneration without over-producing cells. Taking other published datasets into account, we propose that the stat3/socs3 pathway is a key response in all tissue regeneration and thus an important therapeutic target not only for hair cell regeneration, but also for a much broader application in tissue repair and injury healing. The dissertation contains four supplemental files. Supplemental file 1 contains raw data of five expression profiles generated by DGE. It is a tab-delimited text file with six columns. The first column contains the sequences of the tags and the second to sixth columns contain the count of the corresponding tags in control, 0-hpe, 24-hpe, 48-hpe, and 96-hpe profiles respectively. Supplemental file 2 contains UniGene clusters identified from unambiguously mapped tags. It is a tab-delimited text file with six columns. The first column contains the UniGene IDs. The second to sixth columns contain the count of the corresponding UniGene clusters in control, 0-hpe, 24-hpe, 48-hpe, and 96-hpe profiles respectively. Supplemental file 3 contains candidate genes identified by comparison of the expression profiles during regeneration to the control profiles. It is a tab-delimited text file with 19 columns. The contents in each column are specified in the header. Supplemental file 4 contains a list of the candidate genes known to be expressed in the inner ear and/or the lateral line system during development. It is a tab-delimited text file with four columns which contain UniGene IDs, ZFIN IDs, Entrez Gene IDs, and gene symbols respectively.
    URI
    http://hdl.handle.net/1903/11157
    Collections
    • Biology Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility