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All nonmammalian vertebrates studied can regenerate inner ear mechanosensory 

receptors, i.e. hair cells, but mammals only possess a very limited capacity for 

regeneration after birth.  As a result, mammals suffer from permanent deficiencies in 

hearing and balance once their inner ear hair cells are lost. The mechanisms of hair 

cell regeneration are poorly understood. Because the inner ear sensory epithelium is 

highly conserved in all vertebrates, we chose to study the hair cell regeneration 

mechanism in adult zebrafish, hoping the results would be transferrable to inducing 

hair cell regeneration in mammals. We defined the comprehensive network of genes 

involved in hair cell regeneration in the inner ear of adult zebrafish with the powerful 

transcriptional profiling technique, Digital Gene Expression (DGE), which leverages 

the power of next-generation sequencing. We also identified a key pathway, 

stat3/socs3, and demonstrated its role in promoting hair cell regeneration through 

stem cell activation, cell division, and differentiation. In addition, transient 



  

pharmacological up-regulation of stat3 signaling accelerated hair cell regeneration 

without over-producing cells. Taking other published datasets into account, we 

propose that the stat3/socs3 pathway is a key response in all tissue regeneration and 

thus an important therapeutic target not only for hair cell regeneration, but also for a 

much broader application in tissue repair and injury healing. 
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Chapter 1 Introduction 

The sensory epithelium is the major functional structure of the inner ear. It is 

mainly composed of two basic cell types: hair cells and supporting cells (Fritzsch, 

Pauley, & Beisel, 2006). Inner ear hair cells are the basic mechanosensory unit for 

hearing and balancing (Vollrath, Kwan, & Corey, 2007). Loss of inner ear hair cells is 

the major cause of permanent auditory and vestibular deficiencies in mammals 

because they are not able to regenerate hair cells (Roberson & Rubel, 1994). In the 

US, approximately 15% (26 million) of people aged 20-69 have high frequency 

hearing loss resulted from overexposure to noise (NIDCD/NIH). In most cases, the 

functional deficits resulted from the loss of the inner ear hair cells in the cochlea. 

All nonmammalian vertebrates studied show the ability to regenerate their inner 

ear hair cells, including birds (Corwin & Cotanche, 1988; Cruz, Lambert, & Rubel, 

1987; Ryals & Rubel, 1988), lizards (Avallone, Fascio, Balsamo, & Marmo, 2008; 

Avallone et al., 2003), frogs (Baird, Steyger, & Schuff, 1996), and fish (Lombarte, 

Yan, Popper, Chang, & Platt, 1993; Schuck & Smith, 2009; Smith, Coffin, Miller, & 

Popper, 2006). Among all the animals used for hair cell regeneration studies, 

zebrafish (Danio rerio) is particularly amenable to genetic and genomic approaches 

because of high-quality genomic sequence data and the opportunities for mutational 

analysis.  

The inner ear sensory epithelium is highly conserved across all vertebrates 

(Fritzsch, Beisel, Pauley, & Soukup, 2007; Fritzsch et al., 2006), so many studies can 

be done in nonmammalian vertebrates that will identify genes and pathways that 
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might be needed for inducing hair cell regeneration in mammals. To date, however, 

such studies have only achieved limited success because they mainly focused on a 

small number of genes already known to be important for inner ear development. 

Understanding the mechanism of hair cell regeneration in nonmammalian 

animals will help design strategies to potentially induce similar regeneration events in 

humans in order to treat hair cell loss-induced hearing and balance disorders. It is not 

only of scientific but also of clinical interest to understand the molecular mechanism 

involved in hair cell regeneration. 

For over 20 years, studies on hair cell regeneration in nonmammalian vertebrates 

have yielded limited progress. Most of studies were carried out in the “one-gene-at-a-

time” fashion, thereby limiting understanding of the larger, gene network interactions. 

There were a few studies aimed at large-scale candidate gene screening in chickens, 

but they were limited by the techniques used (Hawkins et al., 2003, 2007), and by the 

lack of efficient follow-up approaches. The previous studies suggest that: 1) large-

scale studies are a more efficient way to define a process as complicated as hair cell 

regeneration; 2) using chickens as a model organism for hair cell regeneration studies 

has major limitations, particularly the lack of genetic tools for follow-up studies.  

The goal of my PhD project was to achieve a comprehensive understanding of 

the hair cell regeneration mechanisms at the molecular level. To achieve this goal, we 

used zebrafish as the model system because the animal allowed me to study the hair 

cell regeneration mechanism with high-throughput techniques as well as testing the 

functions of genes of interest in vivo. 
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In my PhD project, the cellular features in inner ear hair cell regeneration were 

characterized in adult zebrafish following noise-induced hair cell loss (described in 

Chapter 2). Based on the visible cellular reactions to damage, the inner ear tissue 

samples were collected at different time-points during the subsequent hair cell 

regeneration. Then gene expression profiles were generated from the tissue samples 

with a high-throughput profiling technique named Digital Gene Expression (DGE) 

(Morrissy et al., 2009). By comparing the regenerative profiles to an untreated control 

profile, candidate genes whose expression level had significantly changed during hair 

cell regeneration were identified. The gene expression profile generation and 

comparison is described in Chapter 3. Lastly, we did follow-up studies in the 

functions of the candidate genes/pathway of greatest interest: stat3/socs3 (described 

in Chapter 4).  

The results from the profile generation and comparison provided a 

comprehensive view of the hair cell regeneration mechanism by examining the 

changes in gene expression levels during the regeneration in a high-throughput way. 

The functional studies confirmed the important functions of stat3/socs3 in hair 

cell/supporting cell production during both development and regeneration. In 

addition, my project also provided protocols for similar de novo candidate gene 

screening in nonmammalian vertebrates with a next-generation sequencing platform. 
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Chapter 2 Inner Ear Hair Cell Regeneration after Noise-Induced 
Hair Cell Loss in Adult Zebrafish 

 

2.1 Background review 

2.1.1 Hair cells and supporting cells 

The inner ear sensory epithelium (Figure 2.1) is mainly composed of hair cells 

and supporting cells (Fritzsch et al., 2006). The most distinguishing morphological 

feature of a hair cell is the hair cell bundle which is located at the apical end of the 

cell. The hair cell bundle is composed of numerous short stereovilli and one single 

long kinocilium (lost in auditory hair cells in postnatal mammals). The stereovilli are 

microfilaments arranged in a staircase fashion with the longest ones closest to the 

kinocilium, a true cilium consisting of microtubules. The hair cells are innervated by 

the afferent (cranial nerve VIII) and efferent neurites on the basolateral surface of the 

cell body. In between hair cells, there are always one or more supporting cells. 

Supporting cells are less distinguishable morphologically than hair cells and are not 

innervated.  

Inner ear hair cells are the basic mechanosensory receptors for hearing and 

balancing (Vollrath et al., 2007). The reflection and deflection of the hair cell bundle 

transforms the energy of sound waves to electrophysiological signals that are sent to 

the brain via cranial nerve VIII. When the hair bundle is pushed toward the 

kinocilium (deflection), the mechanotransductory channels on the bundle are opened. 

As a result, the influx of positive ions (mostly K+ and Ca2+) through the channels 
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depolarizes the hair cell, which triggers the release of neurotransmitters (mostly 

glutamate) onto the afferent synapses formed by the VIII cranial nerve (Fuchs, 

Glowatzki, & Moser, 2003; Gillespie & Walker, 2001; Hudspeth, 1997). On the other 

hand, when the hair bundle is pushed away from the kinocilium (reflection), the 

mechanotransductory channels are closed, resulting in hyper-polarization of the hair 

cell. Although the supporting cells are not working as mechanotransducers, they have 

many other important functions, including hair cell insulation, structural support 

(Tanaka & Smith, 1978), fluid homeostasis maintenance (Wangemann, 2006), 

secretion of otoconia/tectorial membrane building materials (Goodyear, Killick, 

Legan, & Richardson, 1996; Thalmann, Ignatova, Kachar, Ornitz, & Thalmann, 

2001), as well as being a postembryonic source of new hair cells and supporting cells 

(discussed below).  
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Figure 2.1. A schematic illustration of the sensory epithelium. The sensory 

epithelium is mainly composed of hair cells and supporting cells. A hair cell is 

characterized by the apical hair cell bundle (consisting of one kinocilium and several 

stereovilli) and basolateral innervation. Supporting cells locate in between hair cells. 

In addition to inner ears, fishes and aquatic amphibians also possess a superficial 

mechanosensory organ, the lateral line system, for detecting water movement along 

the body (McHenry, Feitl, Strother, & Trump, 2009; Montgomery, Carton, Voigt, 

Baker, & Diebel, 2000). The lateral line system is composed of numerous units called 

neuromasts that consist of mainly hair cells and supporting cells. The lateral line hair 

cells and supporting cells are highly similar to those in the inner ear sensory epithelia 

at both the morphological and molecular levels (Nicolson, 2005).  
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2.1.2 Hair cell regeneration: mammals vs. non-mammals 

In mammals, hair cell production ceases during the late embryonic stages 

(Ruben, 1967). There is no spontaneous cell addition in mature mammalian auditory 

or vestibular sensory epithelia (Roberson & Rubel, 1994). New hair cell production is 

not triggered by hair cell loss in mammals (Chardin & Romand, 1995; Roberson & 

Rubel, 1994) except for the rare cases where limited hair cell regeneration was 

observed in vestibular sensory epithelia (Kuntz & Oesterle, 1998; Lambert, 1994; 

Rubel, Dew, & Roberson, 1995; Warchol, Lambert, Goldstein, Forge, & Corwin, 

1993). As a result, loss of inner ear hair cells from over-exposure to noise (Lim, 1976; 

Mcgill & Schuknecht, 1976), ototoxic drugs (Lim, 1976), or aging (Soucek, 

Michaels, & Frohlich, 1986; Ter Haar, De Groot, Venker-van Haagen, Sluijs, & 

Smoorenburg, 2009) is the major cause of permanent auditory and vestibular 

deficiencies in mammals.  

Different from mammals, spontaneous postembryonic hair cell production has 

been observed in many nonmammalian vertebrates, including the otolithic end organs 

of fishes (Corwin, 1981; Popper & Hoxter, 1984) and the vestibular end organs of 

birds (Jørgensen & Mathiesen, 1988).  Damage-induced postembryonic hair cell 

production has also been observed in nonmammalian vertebrates: auditory and 

vestibular end organs of birds (Corwin & Cotanche, 1988; Cruz et al., 1987), 

vestibular end organs of frogs (Baird et al., 1996), and otolithic end organs of fish 

(Schuck & Smith, 2009; Smith et al., 2006). Functional recovery accompanying hair 

cell regeneration has also been reported in fish (Smith et al., 2006) and birds 

(Dooling, Ryals, Dent, & Reid, 2006; Levic et al., 2007; Müller, Smolders, Ding-
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Pfennigdorff, & Klinke, 1996; Woolley, Wissman, & Rubel, 2001). In addition, both 

spontaneous (Harris et al., 2003) and damage-induced (Balak, Corwin, & Jones, 

1990; Harris et al., 2003; Jones & Corwin, 1993; Song, Yan, & Popper, 1995) hair 

cell production have been observed in the lateral line system.  

Supporting cells are considered the progenitor cells of new hair cells in 

regeneration. The first direct evidence was from the time-lapse imaging of hair cell 

regeneration after laser ablation of lateral line hair cells in salamanders (Balak et al., 

1990; Jones & Corwin, 1993). Supporting cells can give rise to new hair cells in two 

ways: by cell division and differentiation and by direct transdifferentiation (DT). 

Important as they are to our understanding of the regenerative process, the molecular 

mechanisms of hair cell regeneration are poorly understood. However, previous 

publications do reveal the complexity of the process and suggest some overlap or 

similarity between the regulation signaling used in cell differentiation during 

development, and regenerative events in sensory epithelia (Cafaro, Lee, & Stone, 

2007; Ma, Rubel, & Raible, 2008; Millimaki, Sweet, Dhason, & Riley, 2007; Stone & 

Rubel, 1999; Woods, Montcouquiol, & Kelley, 2004). 

2.1.3 Cell cycle regulation in supporting cells 

Evidence of hair cell regeneration from supporting cell division comes from both 

time-lapse imaging (Balak, Corwin, & Jones, 1990; Jones & Corwin, 1993) and from 

DNA synthesis tracking with chemicals like [3H] thymidine or bromo-deoxyuridine 

(BrdU) (Harris et al., 2003; Presson & Popper, 1990; Raphael, 1992; Stone & 

Cotanche, 1994). Damage-induced supporting cell proliferation is mostly restricted to 

the sensory epithelial area where hair cell loss has been induced (Corwin & Cotanche, 
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1988; Ryals & Rubel, 1988; Stone & Cotanche, 1994; Warchol & Corwin, 1996). The 

extent of supporting cell division seems to be directly related to that of hair cell loss 

(Kil, Warchol, & Corwin, 1997; Stone & Cotanche, 1994; Williams & Holder, 2000). 

Temporary over-production of supporting cells and hair cells was observed in avian 

inner ear sensory epithelia after damage, but the cell numbers were reduced to normal 

levels later (pigeons (Columba livia) (Dye, Frank, Newlands, & Dickman, 1999), 

chickens (Gallus gallus) (Girod, Tucci, & Rubel, 1991; Wilkins, Presson, & Popper, 

1999)). 

The molecular triggering of supporting cell division induced by hair cell loss is 

poorly understood. A few genes/pathways have been suggested as 

inducing/promoting supporting cell division, most of which were identified in in vitro 

studies in chicken sensory epithelium explants. Various growth factors, their 

corresponding receptors, and associated proteins are expressed in the normal and 

damaged sensory epithelia in chickens (Bermingham-McDonogh, Stone, Reh, & 

Rubel, 2001; Lee & Cotanche, 1996; Pickles & Heumen, 1997; Umemoto et al., 

1995). Insulin-like growth factor 1 (IGF-1), insulin (Oesterle, Tsue, & Rubel, 1997),  

and Transforming Growth Factor-α (TGF- α) (Warchol, 1999) showed mitogenic 

effect in vestibular sensory epithelium explants from post-hatched chickens, while 

basic Fibroblast Growth Factor (bFGF) inhibited cell division in auditory and 

vestibular sensory epithelium explants (Oesterle, Bhave, & Coltrera, 2000). 

Fibroblast Growth Factor Receptor 1 (FGFR1), a high-affinity receptor of Fibroblast 

Growth Factor  2 (FGF2), re-distributes from hair cells to supporting cells after hair 

cell loss in chicken basilar papilla, suggesting a possible role of FGF2/FGFR1 in 



 

 10 
 

regulating supporting cell division during hair cell regeneration (Pickles & Heumen, 

1997; Umemoto et al., 1995). Similarly, FGFR3 is reported as down-regulated in 

supporting cells after hair cell loss, but then up-regulated as supporting cells re-

entered post-mitotic phase (Bermingham-McDonogh et al., 2001). In addition to 

various growth factors, N-cadherin and retinoic acid were reported as cell division 

inhibitors in sensory epithelium explants (Warchol, 2002) while intracellular 

signaling including the MAPK pathway, Phosphatidylinositol-3 Kinase (PI3K), 

Target of Rapamycin (TOR), and Protein Kinase C (PKC), were considered as 

required for S-phase entry of supporting cells (Witte, Montcouquiol, & Corwin, 

2001). Some epigenetic influences have also been characterized, e.g. histone 

deacetylation up-regulates cell proliferation during hair cell regeneration in cultured 

chicken utricles (Slattery, Speck, & Warchol, 2009). 

Other understanding of cell cycle control mechanisms in sensory epithelial cells 

comes from studies in the cochlea of embryonic and neonatal mice. The best studied 

cell cycle regulation genes in the developing organ of Corti include cyclin-dependent 

kinase inhibitor 1b (cdkn1b/p27kip1) and retinoblastoma 1 (rb1), both of which 

promote cell cycle exit of precursor cells prior to hair cell/supporting cell 

differentiation (Chen & Segil, 1999; Sage et al., 2005). Cdkn1b is also required for 

holding the supporting cells in a post-mitotic status in mice (Löwenheim et al., 1999; 

Ono et al., 2009). In addition, the ability to down-regulate cdkn1b partially accounts 

for the age-dependent changes in the proliferative ability of supporting cells (White, 

Doetzlhofer, Lee, Groves, & Segil, 2006). In chicken, the cdkn1b expression first 

decreases in noise-damaged utricle and then returns to normal levels as regeneration 
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progresses (Hawkins et al., 2007). Meanwhile, rb1, cyclin-dependent kinase inhibitor 

1a (cdkn1a/p21cip1), and cyclin-dependent kinase inhibitor 2d (cdkn2d/p19ink4d) are 

also involved in the maintenance of the post-mitotic status of hair cells (Chen et al., 

2003; Laine et al., 2007; Mantela et al., 2005; Weber et al., 2008). Cyclin D1 (ccnd1) 

has recently been found to play a role in cell cycle control in the mouse cochlea: 

down-regulation in ccnd1 expression correlates with the decline in the proliferative 

ability of differentiating hair cells and supporting cells (Laine, Sulg, Kirjavainen, & 

Pirvola, 2010).  

2.1.4 Cell differentiation regulation in sensory epithelia 

Regulatory mechanisms of cell differentiation during hair cell regeneration are 

similar to those employed during development (Figure 2.2). A good example is the 

Notch signaling pathway (Driver & Kelley, 2009; Stone & Cotanche, 2007). Notch 

receptors are a group of large trans-membrane proteins, activated by their ligands, 

Delta (Dl) or Serrate/Jagged (Ser/Jag) (Rebay et al., 1991; Wharton, Johansen, Xu, & 

Artavanis-Tsakonas, 1985). Once activated, the Notch intracellular domain (NICD) is 

cleaved from the receptor and transferred into the nucleus (Gordon, Arnett, & 

Blacklow, 2008). NICD, together with DNA-binding protein 

CBF1/RBPjκ/Su(H)/Lag-1 (CSL), promotes transcription of genes from the Hairy and 

Enhancer of Split (HES) family that, in turn, inhibit the transcription of Notch 

ligands, completing a feedback loop (Fortini, 2009). This intercellular pathway 

regulates cell differentiation in many development processes, resulting in neighboring 

cells acquiring distinct cell fates, e.g. the mosaic pattern of hair cells and supporting 

cells in sensory epithelia (Driver & Kelley, 2009; Kelley, 2007). Hair cell/supporting 



 

 12 
 

cell differentiation in the developing mouse cochlea requires up-regulation of jagged 

2 (jag2) and delta-like 1 (dll1) in nascent hair cells and strong expression of notch1, 

hes1, and hes5 in their neighboring supporting cells (Puligilla & Kelley, 2009). 

Accordingly, during hair cell regeneration in the chicken basilar papilla, dll1 is 

expressed first symmetrically in pairs of daughter cells from mitosis and then highly 

up-regulated in hair cell precursors while down-regulated in supporting cell 

precursors (Stone & Rubel, 1999). Disruption of the Notch signaling results in 

precocious differentiation and overproduction of hair cells during development in the 

inner ear of mice (Kiernan, Xu, & Gridley, 2006; Lanford et al., 1999; Zine, Water, & 

Ribaupierre, 2000) as well as the inner ear and lateral line of zebrafish (Haddon, 

Jiang, Smithers, & Lewis, 1998; Haddon et al., 1999). Similarly, pharmacological 

blockage of Notch signaling in damaged chicken basilar papilla induced excessive 

hair cell production at the cost of supporting cells, while over-expression of activated 

Notch receptors after damage resulted in the opposite effect (Daudet et al., 2009). 

Notch signaling also regulates the hair cell regeneration in zebrafish lateral line, 

preventing precocious hair cell differentiation at the cost of supporting cells (Ma et 

al., 2008).  

In addition to Notch ligands, atonal homolog 1 (atoh1), a basic helix-loop-helix 

(bHLH) transcription factor, is also inhibited by HES at the transcriptional level 

(Skeath & Carroll, 1992; Woods et al., 2004). Atoh1 is a key player in hair cell 

differentiation in development, during which it is first expressed in all 

undifferentiated precursors and later only in differentiating hair cells to promote cell 

fate commitment, but atoh1 is down-regulated in differentiating supporting cells as a 
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result of HES up-regulation (Millimaki et al., 2007; Woods et al., 2004). While atoh1 

expression is absent from undamaged mature chicken basilar papilla, it is triggered in 

transdifferentiating and proliferating supporting cells and later present only in newly 

produced hair cell precursors during hair cell regeneration (Cafaro et al., 2007), 

suggesting a similar role of the gene in development and regeneration. In addition, 

forced expression of atoh1 in mouse cochlea in vitro (Woods et al., 2004; Zheng & 

Gao, 2000)  and in vivo (Gubbels, Woessner, Mitchell, Ricci, & Brigande, 2008) 

results in the differentiation of ectopic hair cells. Some of the ectopic hair cells have 

morphological as well as physiological resemblances to normal hair cells (Gubbels et 

al., 2008). Forced expression of atoh1 in cultured pluri-potent stem cells leads to the 

commitment of hair cell fate in those cells (Han et al., 2010; Liu et al., 2006). In 

addition, new hair cells are induced in mammalian sensory epithelia after hair cell 

loss by atoh1 transfection, which results in functional recovery in auditory as well as 

vestibular end organs (Baker, Brough, & Staecker, 2009; Izumikawa et al., 2005). 

However, the capability of forced atoh1 expression to induce new hair cell in 

damaged sensory epithelium seems to be context-dependent. The supporting cells 

often fail to maintain their differentiated status once the hair cells are eliminated, 

resulting in a “flat epithelium,” Transfecting the flat epithelium with atoh1 can not 

induce hair cell regeneration, suggesting the existence of supporting cells is required 

for atoh1-induced hair cell differentiation during regeneration in mammalian sensory 

epithelia (Izumikawa, Batts, Miyazawa, Swiderski, & Raphael, 2008).  

In addition to HES, atoh1 is also antagonized by inhibitors of DNA binding (Ids), 

SRY-box containing gene 2 (sox2), and prospero homeobox 1 (prox1), all of which 
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promote supporting cell fate commitment during development (Dabdoub et al., 2008; 

Jones, Montcouquiol, Dabdoub, Woods, & Kelley, 2006; Kirjavainen et al., 2008). 

The transcription factors involved in chicken hair cell regeneration include prox1 

(Stone, Shang, & Tomarev, 2004) and repressor element-1 silencing transcription 

factor (REST) (Roberson, Alosi, Mercola, & Cotanche, 2002), both of which show 

dynamic changes of their expression patterns in the basilar papilla during hair cell 

regeneration. 

In contrast to hair cells, the regulatory mechanism of supporting cell 

differentiation is poorly understood. Notch signaling and related genes (e.g. sox2) are 

required for supporting cell differentiation as the blocking of Notch signaling causes 

the production of supernumerary hair cells at the cost of nearly all supporting cells in 

development (Haddon et al., 1999; Zine et al., 2000) as well as regeneration (Daudet 

et al., 2009; Ma et al., 2008). In addition, FGF-signaling is found to regulate the 

differentiation of different subtypes of supporting cells in the mouse cochlea. The 

fgf8/sprouty2/fgfr3 signaling pathway regulates the commitment and differentiation 

of pillar/Deiters cells in developing mouse cochlea (Jacques, Montcouquiol, Layman, 

Lewandoski, & Kelley, 2007; Mueller, Jacques, & Kelley, 2002; Puligilla et al., 2007; 

Shim, Minowada, Coling, & Martin, 2005). A Notch ligand, hairy/enhancer-of-split 

related with YRPW motif 2 (hey2), is also required for normal differentiation of pillar 

cells (Doetzlhofer et al., 2009). Interestingly, the function of hey2 in pillar cell is 

regulated by FGF signaling via fgfr3 rather than by Notch signaling (Doetzlhofer et 

al., 2009). 
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Figure 2.2. Signaling pathways known to be involved in hair cell/supporting cell 

differentiation during development. Genes in red are also known to be involved in 

hair cell regeneration. 

2.1.5 Direct transdifferentiation 

In addition to supporting cell division, there is a second way to replenish the lost 

hair cells: direct transdifferentiation (DT). DT is an event during which the 

differentiated supporting cells convert themselves to hair cells without cell cycle re-

entry. The early supporting evidence of direct transdifferentiation was morphological: 

the translocation of nuclei from the supporting cell layer to the hair cell layer without 

an addition of new cells was observed in cultured bullfrog saccules after 

aminoglycoside treatment (Baird, Torres, & Schuff, 1993). More compelling 

evidence comes from hair cell regeneration studies in the chicken basilar papilla 

(Roberson, Alosi, & Cotanche, 2004). Continuous infusion of [3H] thymidine or 
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BrdU during hair cell regeneration after gentamicin treatment only labeled a 

proportion of the new hair cells, suggesting the rest might come from direct 

transdifferentiation. Additional supporting data are from studies that showed normal 

hair cell regeneration in the presence of DNA synthesis blockers (bullfrog (Rana 

catesbeiana) saccule (Baird, Burton, Fashena, & Naeger, 2000); newt 

(Notophthalmus viridescens) saccule (Taylor & Forge, 2005); chicken basilar papilla 

(Adler & Raphael, 1996)). 

Both supporting cell division and direct transdifferentiation contribute to hair cell 

regeneration in the chicken basilar papilla (Cafaro et al., 2007; Roberson et al., 2004). 

Direct transdifferentiation takes place earlier than the peak of supporting cell division, 

even before the extrusion of the dying hair cells in the damaged area (Cafaro et al., 

2007; Roberson et al., 2004). In addition, previous studies show that new hair cells in 

the neural half of basilar papilla are more likely to be produced via supporting cell 

division, while those in the abneural half of BP are more likely to be produced by DT 

(Cafaro et al., 2007).  

Interesting as it is, the molecular mechanism of direct transdifferentiation is not 

known. Meanwhile, there are also controversial ideas suggesting that direct 

transdifferentiation is actually the differentiation of hair cell precursors that have been 

committed to hair cell fate, but have yet to terminally differentiate (Morest & 

Cotanche, 2004). 

2.1.6 Hair cell regeneration in zebrafish 

Zebrafish have gained popularity for studies in hair cell 

development/death/regeneration/protection (Behra et al., 2009; Harris et al., 2003; 
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Hernández, Olivari, Sarrazin, Sandoval, & Allende, 2007; Ma et al., 2008). Most of 

the hair cell regeneration studies were done using the lateral line neuromasts of 

zebrafish larvae because they are readily accessible.  In those studies, hair cells are 

eliminated by water-borne ototoxic chemicals (e.g. aminoglycosides, copper, and 

cisplatin) and full regeneration is usually completed in as short as three days 

(Hernández et al., 2007; Ma et al., 2008). In the lateral line neuromasts, hair cell 

regeneration is primarily through cell division after elimination of the hair cells 

(Hernández et al., 2007; Ma et al., 2008). During regeneration, in accordance with its 

role in developing sensory epithelia, the Notch signaling pathway is crucial for hair 

cell/supporting cell differentiation because interruption of Notch signaling resulted in 

precocious differentiation and over-production of new hair cells (Ma et al., 2008). In 

addition, sox2, a transcription factor involved in prosensory domain specification and 

hair cell differentiation during development (Dabdoub et al., 2008), is also considered 

as an important component of lateral line hair cell regeneration (Hernández et al., 

2007). Behra et al. (2009) characterized a novel gene, phoenix, which is specifically 

required for cell proliferation during hair cell regeneration, but not for lateral line 

development or regeneration in other organs (e.g. fin).  

In addition to the lateral line neuromasts, there are studies that tried to explore 

the hair cell regeneration mechanism in developing sensory epithelia in the otic 

vesicles in zebrafish embryos after laser ablation of the hair cells (Millimaki, Sweet, 

& Riley, 2010). However, because of the high level of spontaneous cell division and 

differentiation during the early development of the maculae, it is not an appropriate 

system for studying regenerative processes.  
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Hair cell regeneration also occurs in the inner ear of adult zebrafish after noise-

induced hair cell loss, accompanied by an up-regulation in cell proliferation in the 

sensory epithelium (Schuck & Smith, 2009). Because the rate of spontaneous hair cell 

production is relatively low in adult zebrafish inner ears under normal conditions 

(Bang, Sewell, & Malicki, 2001; Higgs, Souza, Wilkins, Presson, & Popper, 2002), 

the inner ear in the adult fish provides a better system for studying the mechanism of 

hair cell regeneration, enabling the comparison with the mechanisms involved in hair 

cell production during development. However, no publication, to the best of my 

knowledge, has used genomic approaches to globally characterize the molecular 

mechanisms involved in the inner ear hair cell regeneration in adult zebrafish. 

2.2 Experiment overview 

To get a comprehensive understanding of the molecular mechanisms involved in 

hair cell regeneration in adult zebrafish, we first characterized the regenerative 

process at the cellular level. We induced hair cell loss in the saccular sensory 

epithelia (maculae) in adult zebrafish with a noise exposure setup modified from a 

previous study (Smith et al., 2006). The saccular maculae were dissected out from 

fish at different time points after noise exposure and examined with 

immunohistological staining with hair cell markers. 

My results confirmed the noise-induced hair cell loss in the saccular maculae and 

found the recovery of hair cell density occurred within 96 hours after noise exposure. 

These results also provided a reference for deciding the time-points for collecting the 

inner ear tissue samples for gene expression profiling experiments afterwards (See 

Chapter 3). 
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2.3 Materials and methods 

2.3.1 Animal husbandry 

Zebrafish were maintained as previously described (Westerfield 2000) in 

compliance with guidelines for animal care from NIH and the University of 

Maryland.  

2.3.2 Noise exposure of adult zebrafish 

Adult wildtype (TAB-5) (Amsterdam et al., 1999) zebrafish (~ 1yr old) were 

exposed to white noise (100-10,000 Hz) for 48 h at 28-29 ºC according to a protocol 

modified from Smith et al. (2006): a steel exposure bucket was used instead of a 

plastic one in the previous publication. After exposure, the fish were maintained 

under regular husbandry conditions until sacrificed. The control fish were not 

exposed to noise. 

2.3.3 Immunohistochemistry 

The primary and secondary antibodies used include rabbit myosin VI antibody 

and myosin VIIa antibody (Proteus biosciences, 1:200-dilution), Alexa Fluor 568 goat 

anti-rabbit IgG (Invitrogen, 1:1,000-dilution). Other common reagents included PBT 

(1XPBS and 1% Triton X-100 (Sigma)), blocking buffer (10 mg/mL bovine serum 

albumin (Sigma) and 10% goat serum (Vector laboratories) in PBT), and staining 

buffer (1:5-dilution of blocking buffer in PBT).  

Adult zebrafish were anesthetized with 0.03% buffered MS-222 and fixed in 4% 

paraformaldehyde (Sigma) at 4°C overnight. The fixed embryos were rinsed with 

PBS three times before dissection. The inner ear sensory epithelia were dissected as 
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previously described (Liang & Burgess, 2009).  They were stained with Alexa 488 

phalloidin (Invitrogen, 1:1,000-dilution in PBT) for 30 min at room temperature and 

rinsed with PBT for 3 times, 10 min each time. The tissues were then blocked with 

blocking buffer for 6 h at room temperature or 4°C overnight, followed by myosin 

VI/VIIa antibody staining at 4°C overnight. The tissues were then rinsed (3 times, 10 

min each time) and mounted onto slides with Vectashield hard set mounting medium 

with DAPI (Vector laboratories). 

2.3.4 Microscopy and image analysis 

To capture the whole saccular epithelia, several overlapping pictures were taken 

for each epithelium using an AxiovertNLO confocal microscope (Zeiss) with Carl 

Zeiss AIM software (Zeiss) or using an Axiovert200M with an Apotome Grid 

Confocal (Zeiss) with Carl Zeiss Vision software (Zeiss). The individual pictures 

were then tiled with Photoshop 7.0 software (Adobe).  

2.3.5 Statistical analysis 

One-way ANOVA and post-hoc test were used to compare the hair cell numbers 

at different time-points after noise exposure. The calculations were done using Excel 

software (Microsoft). 

2.4 Results 

2.4.1 Noise induced hair cell loss in saccular maculae in adult zebrafish 

We induced inner ear hair cell loss in adult zebrafish using a modified version of 

a previously published noise exposure protocol established in goldfish (Figure 2.3A) 



 

 21 
 

(Smith et al., 2006). Using this setup, we could consistently induce hair cell loss in 

the saccular maculae (Figure 2.3B) in adult zebrafish (approximately one year old). 

Hair cell staining with phalloidin showed an extensive area of hair cell loss took place 

in the anterior-medial region of the saccular macula (Figure 2.3B, red boxes). Such 

hair cell loss was not observed in the utricle or lagena at 0 hour post noise exposure 

(hpe). Because hair cell bundles are the morphological feature of a late differentiation 

stage of hair cells, we counted phalloidin-stained hair cell bundles in saccular 

maculae to quantify the number of hair cells during hair cell loss and regeneration. 

Quantification of phalloidin-stained hair cells in a 20 µm X 20 µm area at 40% total 

length of the anterior-posterior axis of the saccular maculae confirmed the 

observation with ~80% hair cell loss in the specific region (p < 0.05, Figure 2.3B and 

C). Co-staining of the saccular macula with a phalloidin and myoVI/VIIa antibody-

mix confirmed no phalloidin or myoVI/VIIa staining indicating complete elimination 

of hair cells as opposed to surviving bundleless hair cells in the damaged area (Figure 

2.4B).  

2.4.2 Hair cell regeneration after noise-induced hair cell loss 

To establish the time-line of hair cell regeneration in zebrafish inner ears, we 

quantified the hair cells in the 20 µm X 20 µm area at 40% total length of the 

anterior-posterior axis of the saccular macula at 24-h intervals from 0 hpe up to 120 

hpe. Hair cells in the damaged area regenerated rapidly. The number of hair cells in 

the area showed no significant difference to control levels at 96 hpe (Figure 2.3C). 

The regeneration curve showed two faster phases of hair cell addition: 0-24 hpe and 
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48-96 hpe (Figure 2.3C), whereas the curve remains more flat during the times 

between the two phases (Figure 2.3C).  

 Based on the regeneration time-line, we decided to collect inner ear tissue 

sample at 0, 24, 48, and 96 hpe for expression profile comparison described in 

Chapter 3. 
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Figure 2.3. Noise-induced hair cell loss and regeneration in saccular maculae in 

adult zebrafish. A) The noise exposure apparatus used to induce hair cell loss in 

adult zebrafish. B) Phalloidin staining of the saccular hair cells. Hair cell loss 

A 

C 
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occurred in the anterior-medial area of the saccular sensory epithelium (red boxes). 

hpe: hours post exposure, D: dorsal, A: anterior, scale bar = 100 µm. C) 

Quantification of hair cell numbers in a 20 µm X 20 µm area at 40% total length of 

the anterior-posterior axis of the saccular maculae at different time-points after sound 

exposure (One-way ANOVA and post-hoc test, n = 3, *p < 0.05; all error bars in this 

dissertation demonstrate standard deviation). 

2.4.3 Sensory epithelial morphology during hair cell loss and regeneration 

Bundleless hair cells were rarely seen in control saccular maculae (Figure 2.4A). 

After noise exposure, bundleless hair cells were seen occasionally in the damaged 

areas (0 hpe, Figure 2.4B). These cells appeared without bundles but with myosin 

VI/VIIa antibody staining that was much weaker than the other hair cells (Figure 

2.4B). It is unclear if these were viable or dying hair cells. An apical actin ring 

stained with phalloidin was often observed over the bundleless hair cells (Figure 

2.4B). Such actin rings of various sizes were also found in the damaged area where 

no myosin VI/VIIa labeling was present (Figure 2.4B). Hair cells with shorter or 

splayed bundles were also observed in the vicinity of the damaged area (Figure 2.4B).  

During hair cell regeneration, hair cells without a bundle or with a short/thin 

bundle were often seen in the damaged area (Figure 2.4C and D).  Similar to those 

found right after noise exposure, the presence of the apical actin rings were often 

found where this type of hair cell was present (Figure 2.4C and D). At 96 hpe, 

although the density of hair cells (with bundles) was no longer significantly different 

(85% of control density, p > 0.05, Figure 2.3C), hair cells without or with short 

bundles could still be found in the regenerating area (Figure 2.4D).
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Figure 2.4. Morphology of the damaged area in the saccular maculae after noise 

exposure and during regeneration. Saccular maculae were stained with phalloidin 

(green, left panel) and a mixture of myosin VI and VIIa antibodies (red, middle 

panel). A) Saccular macula from control tissue. D: dorsal, A: anterior. B) Saccular 

macula from zebrafish sacrified at 0 h post noise exposure (hpe). Arrows in the left 

panel point at short and splayed hair cell bundles observed after noise exposure. 

Arrows in the right panel point at actin rings of different sizes without the presence of 

hair cells. Arrowhead in the right panel points at a bundle-less hair cell with the apical 

actin ring. C) and D) Saccular maculae from zebrafish sacrified at 48 hpe (C) and 96 

hpe (D). Arrows in the left panel point at young hair cell bundles with apical actin 
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rings. Arrowheads in the right panel point at bundle-less hair cells with apical actin 

rings. Scale bar = 40 µm. 

2.5 Discussion 

2.5.1 The pattern of noise-induced hair cell loss suggests a tonotopic arrangement in 

saccular maculae in adult zebrafish 

In early hair cell regeneration studies in fish, due to the lack of good hair cell 

markers, scanning electron microscopy (SEM) was used to examine hair cell loss. 

Those studies clearly showed the absence of hair cell bundles after ototoxic drug 

administration but not the elimination of the cells (Lombarte et al., 1993). Later 

studies used DAPI as the nuclear marker to show the loss of nuclei at the hair cell 

level in the pseudo-stratified sensory epithelia in goldfish (Smith et al., 2006) and 

zebrafish (Schuck & Smith, 2009) after noise exposure. Myosin VI and myosin VIIa 

have been identified as hair cell markers labeling both the hair cell bundle and cell 

body in zebrafish (Coffin, Dabdoub, Kelley, & Popper, 2007). In this study, noise-

induced hair cell loss (rather than only hair cell bundle loss) was confirmed using a 

myosin VI/VIIa antibody mixture (Figure 2.4B). In addition, our results further 

confirmed the noise exposure setup had consistent performances in inducing inner ear 

hair cell loss, similar to those reported in previous studies (Schuck & Smith, 2009; 

Smith et al., 2006). 

After exposure to white noise, adult zebrafish showed significant hair cell loss in 

the saccular maculae (Figure 2.3). Previous studies in goldfish with similar noise 

exposure setup also induced hair cell loss only in the saccules (Smith et al., 2006) 
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which has been considered as the major auditory end organ in goldfish (Fay, 1978). 

The inner ear of zebrafish shares high similarity with that of goldfish (Platt, 1993), 

which explains why noise-induced hair cell loss was only observed in the zebrafish 

saccule.  

In chickens, hair cells at different locations on the basilar papilla showed 

different vulnerabilities to the over-exposure of pure tones with different frequencies 

(Cotanche, Saunders, & Tilney, 1987), which is consistent with the tonotopic 

mapping of the basilar papilla. Similar results have also been observed, though less 

clearly understood, in the saccule of goldfish (Smith et al., 2006), zebrafish (Schuck 

& Smith, 2009), and cod (Enger, 1981). These results suggest the existence of a 

tonotopic mapping in the auditory epithelium in fish. In our data, over-exposure to 

white noise induced significant hair cell loss in the anterior-medial region in the 

saccular maculae (Figure 2.3B). In the previous study where adult zebrafish were 

exposed to 100 Hz pure tone for 36 h, hair cell loss was observed only the posterior 

area in a sporadic pattern (Schuck & Smith, 2009). The difference in the region of 

most severe hair cell loss in the two studies may be due to the energy distribution 

across the frequencies: an intensive pure tone at 100 Hz vs. broadband (100-10,000 

Hz) white noise. The audiogram of adult zebrafish expands from 100 Hz (or lower) to 

4,000 Hz with 800 Hz as the most sensitive frequency (Higgs et al., 2002). The most 

severely damaged anterior-medial region in our data may be responsible for detecting 

sound of ~800 Hz, while the damaged area in the posterior region observed in the 

previous study (Schuck & Smith, 2009) may correspond to the tonotopic area 

responsible for detecting sound of lower frequencies. 
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2.5.2 Supporting cell “scar formation” after noise-induced hair cell loss 

At 0 hpe, apical actin rings stained with phalloidin was often observed in the 

damaged area in saccular maculae (Figure 2.4B). The actin rings formed by the 

surrounding supporting cells were seen either with or without a myosin VI/VIIa-

positive cell underneath (Figure 2.4B). Such structure has been described in 

aminoglycoside-treated sensory epithelia in bullfrogs as “scar formation,” in which 

the apices of the supporting cells expanded to seal the extra space resulted from hair 

cell death/damage (Baird et al., 1996; Gale, Meyers, Periasamy, & Corwin, 2002; 

Hordichok & Steyger, 2007). Similar to what was seen in our data, the actin rings 

were observed simultaneously with the extrusion of the dying hair cells (Hordichok & 

Steyger, 2007) as well as when the bundleless hair cells survived underneath (Baird et 

al., 1996). In addition, the rings were also observed surrounding immature hair cells 

during hair cell regeneration in bullfrog (Baird et al., 1996), similar to the observation 

during hair cell regeneration in zebrafish saccules (Figure 2.4C and D). 

2.5.3 Hair cell regeneration with or without mitosis 

Extensive studies in birds and amphibians have shown the two cellular 

mechanisms of hair cell regeneration: regeneration via mitosis (Raphael, 1992; Stone 

& Cotanche, 1994) and regeneration via direct transdifferentiation (Baird et al., 1993; 

Roberson et al., 2004). Previous studies in zebrafish lateral line neuromasts suggest 

the majority of new hair cells deriving from supporting cell division after complete 

hair cell loss induced by neomycin (Ma et al., 2008). An increase in BrdU 

incorporation after noise-induced hair cell loss in the damaged area suggests mitosis 

also plays a role in the hair cell regeneration in zebrafish (Schuck & Smith, 2009). 
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Incorporation of BrdU peaked at two days after noise exposure in the previous study 

(Schuck & Smith, 2009), which corresponds to the second phase of hair cell addition 

from 48-96 hpe, assuming a lag between cell division and hair cell differentiation.  

However, we do not have enough data to confirm or rule out the possibility of 

hair cell addition from direct transdifferentiation. At early time points post noise 

exposure (24 and 48 hpe), there were young hair cells (identified based on the 

presence and length of the bundles) found in the damaged area. According to a 

previous publication, bundleless hair cells can also survive and repair their bundles 

after ototoxic treatment (Gale et al., 2002), so it is difficult to know whether these 

hair cells were newly produced by supporting cell transdifferentiation or were 

survivors from noise exposure that were going through repair. The number of hair 

cells returned to control levels within 96 hpe (Figure 2.3C), which seems to be more 

rapid than previously reported as seven days (Schuck & Smith, 2009). However, the 

authors did not collect data between two and seven days after noise exposure, which 

makes it difficult for such comparison. In addition, the presence of hair cells with 

short bundles in the damaged area at 96 hpe (Figure 2.4D) suggests they need a 

longer time frame to become fully matured. 

2.5.4 Zebrafish as a model system for understanding hair cell regeneration in 

nonmammalian vertebrates 

Adult zebrafish are known to produce new hair cells spontaneously (Bang et al., 

2001; Higgs et al., 2002) as well as after hair cell loss (Schuck & Smith, 2009). There 

are several other reasons making it attractive as a model system for understanding the 

molecular mechanisms involved in hair cell regeneration. First of all, it has been a 
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model organism for genetic studies for decades, which facilitates the functional 

studies of any gene of interest involved in hair cell regeneration. Secondly, the 

availability of a whole-genome sequence and a relatively well-annotated 

transcriptome make it possible to carry out large-scale screening for candidate genes 

involved in hair cell regeneration. Last but not least, the existence of the superficial 

neuromasts facilitates the functional studies of candidate genes involved in the hair 

cell regeneration (Behra et al., 2009; Harris et al., 2003; Hernández et al., 2007; Ma et 

al., 2008). 

To establish zebrafish as the model system for hair cell regeneration studies, a 

series of protocols need to be established and streamlined, starting with the induction 

of hair cell death. Ideally the protocol should be able to induce massive hair cell loss 

within a short period of time. In this study, the noise exposure equipment is easy to 

set up, and performs consistently in inducing hair cell regeneration. However, it can 

only induce hair cell loss in a relatively small region in saccular maculae in 48 h. 

Aminoglycosides have been widely used as an ototoxic treatment to induce hair cell 

loss. However, the administration of systemic aminoglycoside did not have ototxic 

effects on zebrafish for unknown reasons. Other categories of chemicals, e.g. cisplatin 

(Ou, Raible, & Rubel, 2007) and copper (Hernández et al., 2007), which are toxic to 

zebrafish lateral line hair cells, may be ototoxic as well. However, the accessibility 

and side effects of systemic administration of these chemicals into adult zebrafish 

remain to be determined.  

The most promising strategy at the moment is the nitroreductase (NTR) system 

which allows time- and tissue-specific targeting of cell death (Pisharath, Rhee, 
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Swanson, Leach, & Parsons, 2007). Expression of nitroreductase driven by a tissue-

specific promoter allows for tissue-specific targeting, while the timing is controlled 

by the administration of Metronidazole (Mtz), a substrate that can be converted to 

cytotoxin by nitroreductase to induce cell death. It has been successfully used in 

regenerative and other studies in zebrafish to induce specific cell death in pancreatic 

beta cells (Curado, Stainier, & Anderson, 2008; Pisharath et al., 2007), liver and heart 

(Curado et al., 2008), gonads (Hsu, Hou, Wu, & Her, 2009; Hu et al., 2009), and 

retina (Montgomery, Parsons, & Hyde, 2010). To properly utilize the NTR-induced 

cell death, a cell/tissue-specific promoter is needed to drive the expression of 

nitroreductase (Curado et al., 2008). As for specifically inducing hair cell death, a 

couple of promoters with such potential have been identified, e.g. pou4f3 (Xiao, 

Roeser, Staub, & Baier, 2005) and pvalb3b (McDermott et al., 2010)., while the 

promoter region used to drive nitroreductase expression needs to be optimized to 

minimize off-target effects. To successfully apply the NTR system to inducing 

massive hair cell death in adult zebrafish, the penetration efficiency of Mtz also needs 

to be tested in adult fish. 
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Chapter 3 Generation and Comparison of Expression Profiles of 
Inner Ear Tissues during Hair Cell Regeneration 

 

3.1 Background review 

An intriguing question in molecular biology is how cells with identical genetic 

materials can have diverse structures and functions. A general answer to this question 

is that not all the genes are equally expressed in different cells. In other words, the 

specific structure and function of a certain type of cell rely on the expression of a 

specific set of genes. Therefore, to get a more detailed answer to the question, we 

need to know what genes are expressed and at what level they are expressed (i.e. the 

gene expression profile) in any specific cell/tissue. 

3.1.1 Sequencing-based gene expression profiling techniques: the early approaches  

The most naive approach is to sequence all the mRNAs in the target tissue/cells 

to get the expression profile. The first attempts to do so were by cDNA library 

construction. To construct the library, mRNAs were extracted from the sample 

usually from a specific tissue/organ and reversed-transcribed into double-stranded 

(ds) cDNAs which were subsequently cloned. Due to the high cost and laborious 

execution of the Sanger sequencing technique, it is not feasible to routinely sequence 

full-length cDNA clones. An alternative way to deal with the cost issue was to 

sequence only a small fragment of the cloned cDNA. These fragments are called 

Expressed Sequence Tags (ESTs) (Adams et al., 1991). They are 150-800 nt long 

unedited, randomly selected single-pass sequence reads derived from cDNA libraries. 
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The ESTs are usually generated from 5'- or 3'- end of a cDNA clone and are named 

5'-ESTs and 3'-ESTs. After the EST sequences are obtained, the annotation of the 

sequences requires sequence clustering and assembly, sometimes using the genomic 

sequences as references. Although the cost was greatly reduced by sequencing ESTs 

instead of full-length cDNAs, it was mainly used for novel gene discoveries and 

genome annotation (Adams et al., 1991). As for expression profiling, it informs the 

researchers the presence/absence of certain transcripts in a tissue sample rather than 

providing a true quantitative expression profile because it was not a cost-efficient way 

to get the data depth needed for the quantification of gene expression level. In 

addition, due to the cloning process required for generating ESTs, the EST data often 

show biased representation for certain groups of transcripts that were tolerated in E. 

coli-based plasmid construction. 

A great advance in quantitative gene expression profiling was the development of 

Serial Analysis of Gene Expression (SAGE) (Velculescu, Zhang, Vogelstein, & 

Kinzler, 1995). The idea was to generate one single short (14-27 bp) fragment (called 

“tag”) from each individual mRNA transcript to represent the original transcript. The 

sequence of the fragment was mapped back to the original transcript based on the 

sequence similarity. The number of times a fragment with the same sequence 

occurred in a sample serves as a direct measurement of the copy number of the 

transcript. SAGE starts from reverse-transcription of mRNAs from samples into ds 

cDNAs. The cDNAs are first digested with a frequent-cutting restriction enzyme 

(anchoring enzyme) and the 3'-fragments of the ds cDNAs are isolated. The cDNAs 

are divided in half and ligated with two different 5'-adaptors respectively. Both 
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adaptors contain a recognition site for a type II endonuclease. After adaptor ligation, 

the digestion with the corresponding type II endonuclease (tagging enzyme) generates 

the tag from the cDNA fragment a specific number of bases (15-27) downstream of 

the 5'-adaptor. Two sets of tags with different adaptors are ligated to form an adaptor 

A-ditag-adaptor B molecule that can be amplified by PCR reactions with adaptor-

specific primers. After the amplification, the adaptor-ditag-adaptor molecules are 

digested with anchoring enzyme again to release the ditags from the flanking 

adaptors. The ditags are then concatemerized with each other by ligation and cloned 

into E. coli cells. The ditags are then sequenced by Sanger sequencing technique, 

quantified, and assigned to the transcripts that they represent using bioinformatic 

tools. The primary advantage of the SAGE technique is that it provides the copy 

number of different mRNA molecules in the sample as a direct measurement of gene 

expression level. Unfortunately, SAGE never gained popularity as a profiling 

technique because of the labor-intensive cloning of ditags and the high costs of the 

Sanger sequencing technique.  

Another profiling technique, Massively Parallel Signature Sequencing (MPSS) 

was developed later and shared the same principle with SAGE (Brenner et al., 2000). 

MPSS differed from SAGE in that it adopted a sequencing method that involves 

involved a series of hybridization and ligation of oligonucleotide fragments with 

known sequences to tags immobilized on microbeads. The sequencing method allows 

reading out the sequences of hundreds of thousands of tags in parallel, which yields 

higher sequencing efficiency and thus deeper data set than traditional SAGE 

(Reinartz et al., 2002). However, due to the high cost of MPSS technique and the 
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issues of reproducibility, MPSS was also not widely adopted for expression profiling 

studies. 

3.1.2 Microarray 

Microarray techniques were developed based on the hybridizing affinity between 

complementary DNA or RNA molecules (Schena, Shalon, Davis, & Brown, 1995). A 

large number of single-stranded DNA molecules with known sequences are 

immobilized onto a solid surface to create the array. Those molecules are called 

probes. To examine the gene expression profile of certain biological sample, mRNAs 

purified from the sample are reverse-transcribed into ds cDNAs. Amplified RNAs 

(aRNAs, also called "targets") are synthesized with the cDNAs as templates. During 

the synthesis, fluorophore-labeled NTPs are used to label the aRNA molecules. The 

targets are then hybridized with the probes and the fluorophores are excited. The 

microarray is scanned and the fluorescent signals from the hybridized targets are 

captured and analyzed. The targets are identified by the probes that they hybridize 

with and the relative abundance of the targets is indirectly determined by measuring 

the fluorescent intensities. The microarray platforms used for gene expression 

profiling can be divided into two categories based on the probes used: cDNA 

microarray and oligonucleotide microarray. In cDNA microarrays, the probes (600-

2,400 nt) are amplified from EST/cDNA libraries (Duggan, Bittner, Chen, Meltzer, & 

Trent, 1999). In oligonucleotide microarrays, the probes (25-60 nt) are designed and 

synthesized based on the known/predicted gene sequences (Hughes & Shoemaker, 

2001). Based on the labeling and hybridization methods of the targets, microarrays 

can be divided into one-color (Hughes & Shoemaker, 2001) and two-color 
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microarrays (Schena et al., 1996). In one-color microarrays, the targets are generated 

only from the biological sample of interest and labeled with one single fluorophore. 

In two-color microarrays, there are two sets of targets. One set is generated from the 

biological sample of interest, while the other is from certain universal reference 

RNAs. The two sets of targets are labeled with two different fluorophores and 

hybridized with the array at the same time. The expression level of any gene of 

interest is read out as the ratio of fluorescent intensity of the target from biological 

sample relative to that of the reference target. 

Microarrays are probably the most widely used high-throughput technique for 

gene expression profiling studies. However, the approach also suffers from various 

limitations. First of all, the technique requires knowing the sequence of the target 

genes examined, thereby limiting the detection of novel genes that might be 

expressed in biological samples. This becomes a major disadvantage when the 

transcriptome of the organism of interest is poorly understood. Secondly, the 

reproducibility of the microarray data has been a long-standing issue . The well-

known publication by Tan et al. (2003) compared three commercially available 

microarrays and found poor reproducibility of data generated from them. Similar 

issues were also found in other studies (Kothapalli, Yoder, Mane, & Loughran, 2002; 

Kuo, Jenssen, Butte, Ohno-Machado, & Kohane, 2002; Li, Pankratz, & Johnson, 

2002; Severgnini et al., 2006).  

The cross-platform inconsistency in microarray data can be attributed to many 

factors. First of all, there is intrinsic cross-hybridization problem between the probes 

and the targets. The lengths of the probes (Järvinen et al. 2004; Wheelan et al. 2008) 
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as well as the experimental conditions (Kuo et al. 2006) contribute to the specificity 

of probe-target binding. Secondly, a surprisingly high number of probes on the 

microarrays were mis-annotated. Although the problem is more severe in custom-

made cDNA microarrays because of the library contamination (Halgren, Fielden, 

Fong, & Zacharewski, 2001; Järvinen et al., 2004; Kothapalli et al., 2002), the 

annotation of the commercial microarrays are not mistake-free. For example, Harbig 

et al. (2005) BLAST the Affymetrix U133 plus 2.0 arrays against known human 

transcripts and found that re-annotation of ~37% of the probes were needed.  Last but 

not least, the interpretation of microarray data is tremendously influenced by different 

data analysis strategies (Lei Guo et al., 2006; Shi et al., 2005; Yauk & Berndt, 2007). 

Because microarrays do not provide direct measurement of gene expression level, it 

has been suggested that the direction of changes rather than the magnitude of the 

changes in gene expression level should be emphasized when doing cross-platform 

comparisons (Kawasaki, 2006). 

3.1.3 Revisiting sequencing-based gene expression profiling techniques 

The high cost and relatively low throughput of the Sanger sequencing technique 

for large-scale sequencing tasks was the major drawback in the traditional 

sequencing-based gene expression profiling techniques. With the recent development 

and adoption of Next-generation Sequencing technologies, sequencing-based 

strategies for gene expression profiling become more and more favorable due to the 

dramatic increase in sequencing efficiency and the accompanying sharp drop in 

sequencing costs.   

3.1.3.1 Next-generation sequencing technologies 
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Several conceptually novel sequencing methods are often referred to as "Next-

Generation Sequencing technologies" (NGS). The commercially available sequencing 

platforms that adopt these technologies include Roche 454 (Margulies et al., 2005), 

Illumina (Bennett, 2004; Bennett, Barnes, Cox, Davies, & Brown, 2005), SOLiD 

(Shendure et al., 2005), and SMRT (Eid et al., 2009). The major features of these 

platforms are summarized in Table 3.1. The innovation in sequencing chemistry and 

signal detection techniques allow sequencing tens of millions of short DNA 

fragments at the same time. In addition, bacterial cloning of the target sequences is no 

longer necessary. All these changes greatly enhance the throughput and reduce the 

cost.  
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Table 3.1. Comparison of different DNA sequencing platforms 

3.1.3.2 Sequencing transcriptomes with NGS technologies 

Previous research sequencing full-length cDNAs/ESTs with the Sanger 

sequencing technique has provided valuable information for gene annotation (Adams 

et al., 1991). However, due to the low throughput and sampling rates, those studies 

revealed only 60% of total transcripts in the cells and most of them are of higher 

abundance in the samples (Brent, 2008).  Deep sequencing of the transcriptome with 

NGS technologies enables us to capture those low-abundance transcripts not detected 

in previous studies. Transcriptome sequencing with NGS technologies is usually 

called RNA-sequencing (RNA-seq). In RNA-seq, mRNAs are converted into short 

Sequencing 
platform 

Sanger 454 Illumina SOLiD SMRT 

Sequencing 
chemistry 

Dye-
terminator 
sequencing 

Sequencing 
by synthesis 

Sequencing 
by synthesis 

Sequencing by 
hybridization 
and ligation 

Sequencing 
by synthesis 

Template 
amplification 

method 

Bacterial 
cloning 

Emulsion 
PCR 

Bridge PCR Emulsion PCR N/A 

Read length 700-900 bases 400 bases 
100 bases X 

2 
75 bases X 2 

>1,000 
bases 

Sequencing 
efficiency 

2Mb/day 1Gb/day 25Gb/day 100Gb/day - 

Cost ~$10.00/kb ~$60.00/Mb ~$2.00 /Mb ~$2.00/Mb - 
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cDNA fragments which are subjected to in-depth sequencing. After that, the short 

cDNA fragments are assembled and annotated. RNA-seq results are highly 

informative because they provide transcriptome sequences (Sultan et al., 2008; 

Wilhelm et al., 2008), transcription start/ending sites (Guttman et al., 2010; Wilhelm, 

Marguerat, Goodhead, & Bahler, 2010), exon-intron boundaries (Wilhelm et al., 

2008; Guttman et al., 2010), splicing patterns (Sultan et al., 2008; Wilhelm et al., 

2008; Trapnell et al., 2010), post-transcriptional modification (Picardi et al., 2010), 

single nucleotide polymorphisms (SNPs) (Cloonan et al., 2008), and transcription 

level quantification (Marioni, Mason, Mane, Stephens, & Gilad, 2008; Mortazavi, 

Williams, McCue, Schaeffer, & Wold, 2008; Wilhelm & Landry, 2009).  

3.1.3.3 Quantitative gene expression profiling with NGS technologies 

One application of the NGS technologies is for quantitative gene expression 

profiling by sequencing and quantifying short cDNA "tags" derived from mRNAs. 

The 454 platform has been used for sequencing and quantifying SAGE ditags, e.g. 

DeepSAGE (Nielsen, Høgh, & Emmersen, 2006). Solexa/Illumina (Digital Gene 

Expression, DGE) and Applied Biosystems (SOLiD SAGE) have developed their 

own SAGE-like protocols to generate short tags (21-nt for DGE and 27-nt for SOLiD 

SAGE) compatible with their own sequencing platforms. These protocols are greatly 

simplified compared to the original SAGE protocol in that they do not require the 

concatemerization or bacterial cloning of the tags. Digital Gene Expression (also 

called "tag profiling") starts from reverse transcription of mRNAs purified from 

biological samples into ds cDNAs. The cDNAs are digested with DpnII or NlaIII 

(corresponding to the anchoring enzyme in SAGE protocol). The 3'-cDNA fragments 
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are isolated and ligated with a 5'-adaptor which contains a MmeI recognition site. 

Another round of digestion with MmeI (corresponding to the tagging enzyme in 

SAGE protocol) generates cDNA tags of 20-nt (starting with DpnII) or 21-nt (starting 

with NlaIII) long. The tags are then ligated to a 3'-adaptor. The tag flanked by two 

adaptors are immobilized onto solid surface in flow cells and amplified by bridge 

PCR. After amplification, the tags are sequenced and quantified with an Illumina 

Genome Analyzer sequencer (sequencing-by-synthesis) and quantified the same way 

as in the SAGE protocol. The tag sequences are then mapped to the transcripts they 

represent to get the final version of a comprehensive gene expression profile with 

direct quantitative measurement of gene expression level.  

3.1.3.4 Advantages of sequencing-based gene expression profiling techniques 

The biggest advantage of RNA-seq compared to microarray is that a priori 

knowledge of the transcriptome of interest (sometimes even the corresponding 

genomic sequences) is not required and thus will not limit the application of RNA-

seq. In addition to the fruitful re-annotation of extensively studied transcriptomes 

(Mortazavi et al., 2008; Nagalakshmi et al., 2008), RNA-seq has also demonstrated 

its power in de novo transcriptome sequencing without existing genomic sequences 

(Vera et al., 2008). 

Although tag profiling has more dependence on what is known about the 

transcriptome/genome, it is not limited to profiling only known/predicted transcripts 

as in microarrays. For the purpose of generating gene expression profiles, RNA-seq is 

probably the most powerful technique for accurately identifying full-length 

transcripts and different splicing isoforms of the genes expressed in the biological 
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samples. When it comes to the quantification of gene expression level, RNA-seq (105 

or higher) and tag profiling (15-20 million tags per lane in Illumina GA IIx) (Asmann 

et al., 2009) have a larger dynamic range compared to microarray (100-1,000-fold) 

(Wang, Gerstein, & Snyder, 2009) for measuring gene expression level. Both RNA-

seq (Cloonan et al., 2008; Nagalakshmi et al., 2008) and tag profiling (Asmann et al., 

2009; Feng et al., 2010; Hegedős et al., 2009; 't Hoen et al., 2008) have shown high 

levels of reproducibility in biological repeats and technical repeats. For example, 

profiling of human brain RNA libraries generated in different labs with DGE 

executed in different lanes in same/different runs on an Illumina sequencer yielded 

highly reproducible profiles (Person Correlation r > 0.95) (Asmann et al., 2009). 

Moreover, much less efforts in data generation and analyses were needed to achieve 

such high reproducibility compared to those required for microarray studies. 

Although all profiling techniques tend to have difficulty capturing rare transcripts, all 

the previous studies comparing tag profiling with different microarray platforms 

showed a more sensitive and reliable measurement of transcripts of low abundance in 

tag profiling (Asmann et al., 2009; Hegedős et al., 2009; 't Hoen et al., 2008). Deep 

sequencing, the direct measurement of copy numbers of transcripts, and simplified 

sample preparation (no bacterial cloning required) all contribute to the more desirable 

performance of RNA-seq and tag profiling (especially the latter one) over microarray 

for quantitative analysis of gene expression profiles. What is more, these features also 

facilitate the inter-lab sharing of profiling data which is extremely difficult to achieve 

for microarray studies (MAQC Consortium, 2006; Yauk & Berndt, 2007).  
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3.1.3.5 Challenges for the new sequencing-based gene expression profiling 

techniques 

The new sequencing-based gene expression profiling techniques are not flawless. 

There are still challenges in every step of the experiment. 

Starting from the library preparation, fragmentation of cDNAs or mRNAs is 

required for RNA-seq experiments to make their length compatible with most of the 

NGS platforms. cDNA fragmentation tends to over-represent 3'-end of the transcript, 

probably due to the existence of RNA secondary structure and/or biased priming 

during reverse transcription (Mortazavi et al., 2008; Nagalakshmi et al., 2008; 

Shendure, 2008). While mRNA fragmentation overall has a unanimous coverage of 

the transcripts, it tends to lose both ends of the transcripts (Mortazavi et al., 2008; 

Wang et al., 2009). As for tag profiling, it is obvious that the transcripts without a 

cutting site of the anchoring enzyme (~6.68% of human Refseq RNAs) will be 

missing from the profile (Asmann et al., 2009). Priming with internal poly-

adenylation sequences and incomplete enzyme digestion give rise to tags located 

upstream to the 3'-most anchoring enzyme cutting site, which makes the mapping of 

the tags to the original transcripts more complicated (Discussed below). 

Another major challenge arises from the short length of the sequencing reads, 

which leads to failures in mapping the short reads to the genome/transcriptome. There 

are mainly two types of mapping problems: no mapping and multiple mapping. 

Sometimes the short sequencing reads can not be mapped to any location on the 

genome/transcriptome, which can be attributed to exon-spanning reads, alternative 

splicing isoforms, post-transcriptional editing, polymorphisms, and sequencing errors. 
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While it has been estimated that more than 75% of the 21-nt tags are expected to 

occur only once in the human genome (Saha et al., 2002), the chance of mapping 

short RNA-seq reads and DGE tags to a specific gene or genome location is further 

lowered by repetitive sequences, polymorphisms (e.g. SNPs), and sequencing errors. 

Using the 454 platform or pair-end sequencing on the Illumina and SOLiD platforms 

to get longer RNA-seq reads (200-500 nt) will definitely be helpful to the mapping 

problems. Bioinformatic and statistical strategies can also partially alleviate the 

problems. For example, in case of low-copy repetitive sequences, multi-mapping 

RNA-seq reads can be assigned to a genome location based on the information from 

their unique-mapping neighbors (Cloonan et al., 2008; Mortazavi et al., 2008). The 

mapping of the DGE tags to a specific genome/transcriptome location is even more 

challenging due to even shorter lengths (20-27 nt). Several studies tried to assign tags 

with more than one mapping sites to a unique gene by calculating the probabilities of 

those tags derived from different genes (Ge, Jung, Wu, Kibbe, & Wang, 2006; Malig, 

Varela, Agosin, & Melo, 2006). Many factors were taken into account for the 

probability calculation, including the sequence context of the putative mapping loci 

(e.g. internal poly-adenylation sequences) (Malig et al., 2006) and the gene 

expression data from previous SAGE and microarray studies (Ge et al., 2006). In 

most cases, the tags are mapped to the 3'-most anchoring enzyme cutting sites, but 

exceptions have been observed as well (Asmann et al., 2009). Moreover, while such a 

method is useful for DGE in organisms with a relatively well-annotated 

transcriptome, it may induce more biases when the experiment is done in an organism 
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with a poorly studied transcriptome and the mapping is mainly based on EST 

sequences rather than curated, full-length transcript sequences.  

While RNA-seq clearly has advantages over DGE when it comes to the accurate 

mapping of short sequence reads, DGE, at the moment, is still favored over RNA-seq 

for generating a quantitative gene expression profile for two main reasons. First, 

compared to DGE, RNA-seq needs a much greater sequencing depth in order get 

adequate coverage of transcripts for measuring the gene expression level. For 

example, it was estimated that RNA-seq required at least 40 million reads to cover 

90% of a transcriptome library while DGE required no more than 5 million tags 

(Wold & Myers, 2008). The great difference in required sequencing depth is directly 

translated into the more expensive sequencing cost when RNA-seq is used for 

quantification. The other reason lies in the more complicated statistics needed for 

quantifying gene expression level from RNA-seq data. Because a single transcript 

gives rise to multiple cDNA fragments "randomly" in RNA-seq, the total number of 

cDNA fragments mapped to the transcript can not be used to represent the copy 

number of the transcript until they are normalized according to the length of the 

transcript (Marioni et al., 2008). Further normalization may also be required given the 

biased coverage of full-length transcripts resulting from library preparation.  

With further reduction of the sequencing cost and optimization of the protocol, 

RNA-seq will become more applicable for quantification profiling studies. However, 

instead of being replaced by RNA-seq, DGE will more likely be adapted as a quick 

gene expression profiling routine in the future. Under current circumstances, a 

combination of low-coverage RNA-seq and DGE would allow large-scale 



 

 46 
 

quantitative analysis of gene expression profiles at relatively low costs (Wang et al., 

2010). 

3.2 Experiment overview 

Previous studies on hair cell regeneration mechanisms generally focused on one 

or a small number of genes/pathways at a time (Daudet et al., 2009; Ma et al., 2008; 

Roberson et al., 2002; Stone et al., 2004; Stone & Rubel, 1999) with the exception of 

very few microarray studies with limited data depth (Hawkins et al., 2003, 2007). To 

avoid these limitations, we used a new high throughput gene expression profiling 

technique, Digital Gene Expression (DGE, i.e. tag profiling) (Morrissy et al., 2009) to 

examine the changes in gene expression during hair cell regeneration in adult 

zebrafish. 

In order to have a comprehensive understanding of the genes/pathways involved 

in inner ear hair cell regeneration after noise exposure in adult zebrafish, we 

generated expression profiles from inner ear samples of adult zebrafish using DGE at 

different time points (based on Section 2.4.2) during hair cell regeneration. By 

comparing the regeneration profiles to the control profile, we screened for genes 

whose expression level significantly changed during regeneration. These genes are 

considered as “candidate genes” because they are more likely to play important roles 

in hair cell regeneration. Pathway analyses were performed to identify key pathways 

strongly enriched in the regeneration response.  
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3.3 Materials and methods 

3.3.1 Inner ear tissue collection and RNA extraction 

Adult wildtype (TAB-5) (Amsterdam et al., 1999) zebrafish (~ 1yr old) were 

exposed to white noise as described in Section 2.3.2. After exposure, the fish were 

maintained under regular husbandry conditions until sacrifice. The control fish were 

not exposed to noise. Fish were euthanized with 0.03% buffered MS-222 (Sigma) at 

0, 24, 48, and 96 hpe. The heads were immediately removed and rinsed in the 

RNAlater (Ambion). Both saccule and lagena were collected for RNA extraction 

because separating them in fresh tissue is far too difficult to be performed rapidly. 

Total RNA from saccules and lagenae was extracted with Trizol (Invitrogen) 

according to manufacturer’s instructions. The RNA concentration and purity was 

determined by a Nanodrop spectrophotometer. 

3.3.2 Generation of expression profiles from inner ear tissues with Digital Gene 

Expression (DGE) 

Gene expression profiles of the inner ear samples were generated by Illumina, 

Inc. using the Digital Gene Expression (DGE) technique, i.e. tag profiling. mRNAs 

were reverse-transcribed and converted to double-stranded cDNAs that were then 

digested with DpnII. The 3’-fragments were purified and ligated to a 5’-adaptor 

containing an MmeI restriction site. Digestion by MmeI cut 20 bps into the cDNA 

fragments. After ligation to a 3'-adaptor, a 20-nt long cDNA fragment (“tag”), flanked 

by 5'- and 3'-adaptors, was generated from the original mRNA. All the tags were then 
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sequenced by the Illumina Genome Analyzer. After sequencing, the number of tags 

with identical sequences in each experiment were counted and pooled. 

3.3.3 Tag mapping and annotation 

Tags detected only once in the five expression profiles were discarded to 

simplify analysis. The remaining tags were mapped against transcriptome and 

genomic sequence databases: Refseq RNAs, UniGene, Ensembl RNAs, Ensembl 

RNA ab initio, and the zebrafish genome (Zv.8). A C++ program was developed to 

efficiently map the tags to specific databases. The program starts by building a prefix 

tree of the divergent part of the tags (16-nt sequence after the DpnII cutting site 

“GATC”) and by linearly scanning the database for potential matches to the common 

prefixes (DpnII cutting site “GATC”). Upon finding a match, the prefix tree was 

searched for the remainder of the database string. Those tags that failed to be mapped 

were re-mapped when single-nucleotide mismatch was allowed to accommodate the 

high frequency of polymorphism in zebrafish genome. However, the mis-match data 

were not used for further analyses in this study. For candidate gene screening, only 

the mapping results in Refseq RNA and UniGene were used because they provided 

the most useful information about known/predicted genes. To be included for further 

analyses, a tag needed to be “unambiguously mapped,” i.e. mapped to only one 

Refseq RNA entry (and the corresponding UniGene entry if existing) or to only one 

UniGene entry (when no mapping in the Refseq database). UniGene IDs were used as 

the primary index (except for those Refseq RNAs without corresponding UniGene 

IDs). Potential miRNA-encoding genes in the profiles were examined separately (See 

Section 3.3.7). 
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3.3.4 Comparisons of expression profiles 

The expression level of a certain gene (identified by a unique UniGene ID) was 

the summation of counts of the “unambiguously mapped” tags normalized by the total 

counts of all tags obtained in the profile, resulting in expression units of “Transcripts 

Per Million (TPM). χ2-tests (genes with tag count > 5) and Fisher’s Exact Tests 

(genes with tag count ≤ 5) were used to compare the expression levels of the genes 

quantified by tag profiling. The calculation was done using R software. Expression 

data from inner ear samples collected at different time-points during regeneration 

were compared to those from the control sample. Candidate genes were identified for 

further analysis if they showed significant differences in expression level during 

regeneration compared to the control sample, i.e. ≥ 1.5-fold increase or ≥ 2-fold 

decrease in expression level with a p value < 0.01 as determined by χ
2-test or Fisher’s 

Exact Test. 

3.3.5 Verification of candidate genes 

Candidate genes identified by expression profile comparison were confirmed 

with qRT-PCR. qRT-PCR reactions were carried out with the SYBR GreenER two-

step qRT-PCR kit for iCycler according to the manufacture’s instructions. 

Glyceraldehyde-3-phosphate dehydrogenase (gapdh) was used as the reference gene 

for all experiments. The relative change in expression level of a gene X in a certain 

experimental (EXP) sample compared to the control (CON) sample is calculated as 

2^(∆CtEXPx - ∆CtCONx) while ∆CtEXPx = (CtEXPref - CtEXPx) and ∆CtCONx = (CtCONref - 

CtCONx). Ct is the cycle number at which amplification rises above the background 

threshold. The qRT-PCR primers are listed in Table 3.2. 
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Table 3.2. Sequences of qRT-PCR primers 

3.3.6 Data analyses 

Sample clustering analysis was done using Genesifter software (Geospiza). The 

distances between different inner ear tissue samples were calculated based on the 

overall expression profile from each sample. Pathway analysis was done with 

candidate genes using the MetaCore software (GeneGo) by utilizing known 

relationships between the human orthologs of the zebrafish candidate genes. The 

Target gene Primer sequences 

atoh1a 
F: 5’-GCG AAG AAT GCA CGG ATT GAA CCA-3’ 

R: 5’-TGC AGG GTT TCG TAC TTG GAG AGT-3’ 

dld 
F: 5’-TCC AAC CCT TGC TCG AAT GAT GCT-3’ 

R: 5’-TCG ATG TTG TCT TCG CAG TGC GTT-3’ 

dre-miR-21-1 
F: 5’-GGC GTG GAT ATA AGT CTT TCC CAG TGT G-3’ 

R: 5’- AGA CAG CCT ACA GAC TGT TGT CGC-3’ 

jak1 
F: 5’-ACG AGT GCT TGG GAA TGG CTG TTT-3’ 

R: 5’-AGT TGC GTT GCT TAA TGG TGC GGT-3’ 

socs3a 
F: 5’-TAA AGC AGG GAA GAC AAG AGC CGA-3’ 

R: 5’-TGG AGA AAC AGT GAG AGA GCT GGT-3’ 

socs3b 
F: 5’-CGG ATA ACG CTT TGA AGC TGC CTT-3’ 

R: 5’-TAC TAT GCG TTA CCA TGG CGC TCT-3’ 

stat3 
F: 5’-AGT GAA AGC AGC AAA GAG GGA GGA-3’ 

R: 5’-TGA GCT GCT GCT TAG TGT ACG GTT-3’ 
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results were then examined manually to identify the genes/pathways of highest 

interest. 

Gene expression data were obtained from the Zebrafish Information Network 

(ZFIN, www.zfin.org).  χ2-test was used to examine if the genes known to be 

expressed in the developing ears and lateral line system were significantly enriched in 

the list of candidate genes compared to all the genes identified from the expression 

profiles. Z-scores were also used to show similar enrichment and was calculated by 

Z-score = (r-n*(R/N))/(n*(R/N)*(1-R/N)*(1-(n-1)/(N-1)) where R = the total number 

of candidate genes, N = total number of genes identified from the profiles, r = the 

number of candidate genes known to be expressed in the developing ear/lateral line 

system, and R = the number of genes known to be expressed in the developing 

ear/lateral line system in the profiles. When the Z-score is greater than 2, the genes 

known to be expressed in the developing ear/lateral line system occur more often in 

the group of candidate genes than expected as if the group of candidate genes had 

been randomly selected from the profiles. 

3.3.7 Identification of candidate genes encoding miRNAs 

Tags with no Refseq or UniGene mappings and with only one genome mapping 

locus were mapped against the known zebrafish miRNAs from Release 15 

(miRBase). A tag was considered as associated with a miRNA when the tag locates 1) 

on the same strand of chromosome as the miRNA and 2) less than 10kb away (up- or 

down-stream) from the miRNA. The statistical analyses were performed as 

mentioned in Section 3.3.4. 
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3.4 Results 

3.4.1 Gene expression changes in inner ear tissues collected during hair cell 

regeneration  

We generated transcriptional expression profiles from inner ear tissue samples 

(saccules and lagenae) collected from noise-exposed zebrafish at 0, 24, 48, and 96 

hpe as well as from control fish. The expression profiles were generated by the 

“Digital Gene Expression” (DGE) technique, i.e. tag profiling. The raw data from 

profiling included sequences of 944,347 transcript-representing tags (20-nt) and a 

“count” associated with each tag (Supplemental file 1; Table 3.3). Here “count” 

means the number of times that a tag with a specific sequence was detected from a 

specific tissue sample, which is a direct readout of the expression level (mRNA copy 

number) of the represented gene. Each tissue sample yielded ~300,000 unique tag 

sequences from ~3,000,000 total tags. Closer examination of the tag sequences 

showed 6.8% of the unique tag sequences containing one or more “N”s where the 

sequencer failed to make an accurate base call. 

Around 68% of the tags, consisting of ~4% of the total tag counts, were detected 

only once in the five profiles and excluded from the tag mapping process for quality 

control purposes (Table 3.3). After filtering out these tags, there were 303,342 unique 

tag sequences remaining, with a total number of 15,103,943 sequenced tags. Only 

these tags were included further in the analyses. 
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Table 3.3. Summary of tag profiling results 

 
Total 

 
After filtrationb 

Count 
Unique tag 
sequences Count 

Unique tag 
sequences 

Control 3,339,753 327,240  3,199,598 187,085 
0 hpea 2,758,836 279,532  2,646,064 166,760 
24 hpe 3,615,956 317,505  3,486,384 187,933 
48 hpe 3,476,027 331,687  3,337,409 193,069 
96 hpe 2,554,376 289,177  2,434,488 169,289 
Total 15,744,948 944,347  15,103,943 303,342 

a. hpe: hour post exposure 
b. Tags that were detected only once in five profiles are excluded. 

3.4.2 The distribution of tag abundance 

Each profile was composed of 166,760-193,069 unique tag sequences (Table 

3.3). The number of tag counts were transformed to the normalized unit called 

transcripts per million (TPMs) by dividing the number of tag counts by the total 

number of sequences in one profile, then multiplying by 1 million. The distribution of 

tag abundance was consistent across all five profiles (Figure 3.1). In each profile, 

~85% of the tag sequences were detected at the level of no more than 3 TPMs which 

is equivalent to an average of no more than one copy of the transcript per cell. A 

much smaller percentage (~15%) of tag sequences were detected medial abundance 

(3-1,000 TPMs). Very few tag sequences (~0.05%) were highly enriched (>1,000 

TPMs) in each profile. 
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Figure 3.1. Distribution of tag abundance in five expression profiles. The numbers 

of unique tag sequences were plotted against the different level of abundances. The 

tag abundance was normalized to units of Transcripts Per Million (TPMs). Each line 

in the figure represents data from one expression profile. Five lines representing five 

profiles are superimposed in the figure to show the similar distribution pattern in all 

five profiles. 

3.4.3 Tag mapping to transcriptome and genome databases 

A total number of 303,342 unique tag sequences were mapped to multiple 

databases: RefSeq RNA, UniGene, Ensembl RNA, Ensembl ab initio and the 

zebrafish genome (Zv8). For further analyses, only the mapping results from RefSeq 

RNA, UniGene, and genomic sequences were taken into account while those based 

on Ensembl databases were only used as references. ~60% of the unique tag 

sequences were mapped to at least one known/predicted transcript or at least one 
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location in the genome (Figure 3.2A). ~34% of the tag sequences were mapped to one 

or more known/predict transcripts. Among those sequences, ~78% or as many as 

80,604 sequences were unambiguously mapped to one known/predicted transcript 

(Figure 3.2A) and used for gene identification and expression level calculations. 

From the tag sequences unambiguously mapped to only one transcript, 22,324 

UniGene clusters were identified (Supplemental file 2). 

No mismatch was allowed in the mapping results presented in Figure 3.2A and as 

the bars with solid colors in Figure 3.2B. Figure 3.2B shows the break-downs of 

mapping results according to the number of the tags in the control profile (normalized 

to TPMs). Tag sequences detected at the level of no more than 3 TPMs showed the 

worst “overall mappability” (the percentage of tag sequences mapped to at least one 

transcript or genome location) with nearly 40% of the sequences failing to be mapped 

to any transcript or genomic location (Figure 3.2B). The overall mappability 

improved as the abundance of the tags increased (Figure 3.2B). However, the 

percentage of ambiguous mapping (mapped to more than one transcript or genome 

location) also increased with the overall mappability (Figure 3.2B). There was only 

~1.2% of tag sequences with >1,000 TPM abundance that failed to be mapped to the 

transcriptome or genome, but the percentage of ambiguously mapped sequences in 

this group was as high as 67%. Tag sequences with medial abundance showed a much 

higher percentage of unambiguous mapping (mapped to only one transcript or 

genome location).  For example, tag sequences with 10-100 TPMs abundance showed 

highest percentage (~60%) of unambiguous mapping, followed by tag sequences with 

abundance of 3-10 TPMs and 100-1,000 TPMs  (Figure 3.2B).  
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Due to the high rate of polymorphisms in zebrafish genome and possible 

sequencing errors, we also performed tag mapping allowing one sequence mismatch 

(bars with shaded colors in Figure 3.2B). When one-mismatch was allowed, overall 

mappability and the percentage of unambiguous mapping increased with all tag 

sequences regardless of their abundances. The low-abundance group (≤3 TPMs) 

showed the greatest improvement: less than 7% of the tag sequences failed to be 

mapped, while the percentage of unambiguous mapping increased from 46% to 67% 

(Figure 3.2B). However, due to the low abundance of these tag sequences, the 

increased mappability resulted from one-mismatch strategy did not lead to significant 

changes to the overall expression profiles, so only the expression profiles annotated 

by no-mismatch mapping were used for further analyses for higher stringency.  In this 

study, the tag sequences were only considered associated with genes or genome 

locations based on no-mismatch mapping. Only data calculated from the control 

profile are presented in Figure 3.2B, but all five profiles showed similar mappability 

patterns across different tag abundances. 

3.4.4 Unexpected tags related to the transcripts 

Theoretically tags can only be generated from the 3’-most DpnII cutting site in 

the cDNA molecule. However, due to the incomplete DpnII digestion and priming to 

internal poly-A sequences, other DpnII cutting sites farther from the 3’-end of the 

cDNA molecules can also give rise to tags. Previous publications suggest giving 

priority to 3’-most DpnII site-mapping when a tag sequence can be mapped to 

multiple transcripts (Blackshaw et al. 2004), so we examined the probability of tags 

generated from different DpnII cutting sites on the cDNA molecules. Only tag 
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sequences that mapped to the sense strand of one Refseq RNA transcript were used. 

In addition, tag sequences containing any “N” were also excluded. After examining 

27,193 such tag sequences, we found only 46% of the tag sequences mapped to the 

3’-most DpnII cutting sites (Figure 3.2C). As high as 50% of the tag sequences were 

mapped to the 2nd to 10th DpnII cutting sites from 3’-ends of the transcripts.  
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Figure 3.2. Summary of mapping results of tag sequences. 303,342 unique tag 

sequences from five time-points were mapped against transcriptome and genome 

databases. A) ~34% of the tag sequences were mapped to one or more 

known/predicted transcripts and ~26% to one or more loci in genome (without a 

known transcript), leaving ~40% of the tag sequences without transcriptome or 

genome mapping. Among those mapped to known/predicted transcripts, ~78% were 

unambiguously mapped. B) Analysis of mapping results in tag sequences of different 

abundances. The bars with solid colors are results from no-mismatch mapping and 

those with shaded colors are results from one-mismatch mapping. The results 

presented here are from the control profile. C) The mapping of tag sequences to 

different DpnII cutting sites in the transcripts. The cutting sites are numbered from 

the 3’-end of the transcripts, i.e. “1st” means the 3’-most cutting site. 
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3.4.5 Candidate gene identification and confirmation 

We used χ2-tests and Fisher’s exact tests to compare the gene expression level 

during regeneration to the control level. 2,269 genes (identified as unique UniGene 

clusters) with significant changes in their expression levels in at least one time-point 

during regeneration were identified as candidate genes (Supplemental file 3). These 

genes were identified by a p value cutoff of 0.01 and a fold-change ratio ≥1.5 or ≤0.5. 

Several candidate genes identified by DGE were confirmed with qRT-PCR (Figure 

3.3A). 

Over 60% of the candidate genes were up-regulated during regeneration while 

the others were down-regulated (Supplemental file 3). Out of the four regenerative 

profiles, 1,628 candidate genes were identified from the 0-hpe profile (Figure 3.3B). 

The number of candidate gene decreased with time, with the 96-hpe profile 

containing the smallest number of candidate genes (Figure 3.3B). 
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Figure 3.3. Confirmation and characterization of candidate genes. A) Some of the 

candidate genes (0 hpe) identified by tag profiling were confirmed by qRT-PCR using 

gapdh as a reference gene (n = 3, one-tail t-test, *p < 0.01). B) The numbers of 

candidate genes identified from four regenerative profiles respectively. 
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3.4.6 Involvement of candidate genes during inner ear and lateral line system 

development 

Based on data from the Zebrafish Information Network (ZFIN), 186 candidate 

genes were known to be expressed in the developing ears/lateral line systems 

(Supplemental file 4). Statistical analyses suggested a greater enrichment of the genes 

known to be expressed in the developing ears/lateral line systems in the group of 

candidate genes than expected as if the group of candidate genes had been randomly 

selected from the profiles (p < 0.0001 from χ
2-test and Z-score = 102.5).  

3.4.7 Clustering analysis of five gene expression profiles 

Clustering analysis of the five expression profiles with Genesifter software 

(Geospiza) based on the calculation of the overall differences between profiles 

showed that the 96-hpe profile shared the highest similarity with the control profile, 

followed by the 24-hpe and the 48-hpe profiles, which were highly similar to each 

other, and then by 0-hpe profile that differed the most from the control profile (Figure 

3.4A, top part). Essentially the transcriptional profiles are most different immediately 

after sound exposure and slowly return to normal over the course of four days.  

3.4.8 Pathway analysis with identified candidate genes 

Pathway analyses were carried out for the 2,269 candidate genes using the 

Metacore software package (GeneGo). Approximately 50% of the genes were 

included in the analysis because their homologs in human could be identified based 

on the HomoloGene database. The functions of the most enriched interaction network 
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calculated from the candidate genes in each experimental time-point are listed in 

Figure 3.4A (bottom part).  

When manually examining the interaction networks, we focused on nodes or sub-

networks that shared significant connections with other part of the network. Based on 

that preference, we identified the stat3/socs3 pathway as the dominant signaling 

pathway to become activated at the earliest time-point of recovery (0 hpe) (Figure 

3.4B). Signal transducer and activator of transcription 3 (stat3) and suppressor of 

cytokine signaling 3a (socs3a, a zebrafish homolog of human socs3) were both 

significantly up-regulated at 0 hpe (Supplemental file 3). Some of the related genes, 

e.g. socs3b (the paralog of socs3a), Janus kinase 1 (jak1), and matrix 

metalloproteinase 9 (mmp9), also showed significant changes in their expression 

levels (Supplemental file 3). 
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Figure 3.4. Analyses of the expression profiles and candidate genes. A) Clustering 

analysis of the five expression profiles with Genesifter software showed the 

relationship between different profiles (top diagram). The clustering results had the 

predicted relationship where the 0 hpe expression was the most different from control 

and then the samples progressively returned to “normal” over time. Pathway analysis 

showed cell signaling pathways represented by the candidate genes that are critical 

for specific phases of regeneration, e.g. cell proliferation-related at 0 hpe and cell 
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differentiation-related at later time-points (bottom boxes). B) Pathway analysis of the 

candidate genes (identified at 0 hpe) involved inner ear hair cell regeneration 

highlighted the interactions between stat3 and socs3 (dashed circles) with other 

identified candidate genes. The known interactions (red: positive; green: negative; 

grey: unspecified) between the human orthologs of the candidate genes were 

extracted in batch to predict the candidate pathways involved in the hair cell 

regeneration. Different colors of the circles indicate those genes being up- (red) or 

down- (blue) regulated during hair cell regeneration. 

3.4.9 Candidate genes encoding miRNAs 

A total of 55,930 tag sequences were not associated with any Refseq or UniGene 

entry and mapped to only one location in the genome. Those tags were compared to 

the 127 zebrafish miRNAs (Release 15 from miRBase). From those miRNAs, we 

identified 12 candidate miRNAs (from eight clusters) whose expression level had 

significantly changed during hair cell regeneration (Table 3.4). Most of those miRNA 

were down-regulated during regeneration, except for three: dre-mir-21-1, dre-mir-

29a-1, and dre-mir-29b-3 with the latter two being in one cluster. qRT-PCR results 

further confirmed the up-regulation of dre-mir-21-1 (Figure 3.3A). 
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Table 3.4. Candidate genes encoding miRNAs 

miRNA 
Fold-change relative to control  Expressed ina 

0 hpe 24 hpe 48 hpe 96 hpe  Ear Neuromast 

dre-let-7b 0.3 -b - -  N N 

dre-mir-133a-2 - 0.4 - -  Y Y 

dre-mir-182 
dre-mir-183 
dre-mir-96 

0.5 0.4 - -  Y Y 

dre-mir-199-3 0.3 - - -  N N 

dre-mir-21-1 1.6 - - -  Y N 

dre-mir-23a-1 - 0.3 - -  N Y 

dre-mir-24-4 
dre-mir-27e 

- 0.2 0.4 -  N Y 

dre-mir-29a-1 
dre-mir-29b-3 

3.7 - - -  N N 

a. Based on data from Wienholds et al. 2005. 
b. Expression level not significantly different from control 

3.5 Discussion 

3.5.1 Deep profiling data generated by DGE 

We generated one expression profile from control tissue and four expression 

profiles from regenerative tissues. Each of the five profiles contains approximately 

three million tags (Table 3.3).  However, due to the nature of DGE and other SAGE-

like techniques, the transcripts without a DpnII cutting site would be missing from the 
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profiles. The Illumina sequencing platform is not perfect as 6.8% of the unique tag 

sequences (944,347) contains one or more unidentified bases (marked as “N”s in 

Supplemental File 1). For quality control, tags detected only once in all five profiles 

were eliminated (Table 3.3) because they are more likely to result from rare DpnII 

cutting events (See Section 3.5.2), sequencing errors or other artifacts and would not, 

regardless of whether they were artifacts, impact the final analysis. In each profile, 

most of the tag (~85%) sequences fell into the category of low-abundance tag 

sequences (≤ 3 TPMs) while high-abundance tag sequences (>1,000 TPMs) were 

detected much less frequently (Figure 3.1). Similar abundance distribution has also 

been found in other DGE studies (Hegedős et al., 2009).  

3.5.2 Mapping of tag sequences to known/predicted transcripts and genome 

Approximately 49% of the tag sequences were not mapped to any transcript or 

genome location (Figure 3.2A). The unmapped sequences were mostly composed of 

sequences from the low-abundance group (Figure 3.2B, bars with solid colors). There 

are several possible reasons for the existence of unmapped sequences, including 

sequencing errors, SNPs, unidentified splicing isoforms or RNA editing event, and 

gaps in genome sequences. It is not surprising that the overall mappability increased 

when one mismatch was allowed in the mapping (Figure 3.2B, bars with shaded 

colors) because it allowed a certain level of tolerance for SNPs and sequencing errors. 

The improvement was most prominent in the low-abundance group (Figure 3.2B), 

suggesting most of the unmapped sequences in this group were resulted from SNPs or 

sequencing errors. 
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Approximately17% of the tag sequences failed to be mapped to any 

known/predicted transcripts, but could be mapped to certain intergenic locations on 

the genome (Figure 3.2A). These tags may represent non-protein coding genes (e.g. 

miRNA, see Section 3.5.4) or novel genes, suggesting the potentials of using DGE for 

transcriptome annotation.  

Sometimes a tag sequence could be mapped to multiple transcripts or multiple 

locations in the genome, which is considered a case of “ambiguous mapping” (Figure 

3.2A). Tag sequences with unidentified bases are more likely to be mapped to 

multiple transcripts/genome locations.  Moreover, the ambiguous mapping is more 

likely to happen in organisms like zebrafish due to a genomic duplication and 

significant stretches of repeated sequence. Ambiguous mapping was found in tag 

sequences of different abundances, but most frequently in the group of sequences 

with high abundance (Figure 3.2B), probably resulted from tags originated from the 

highly homogenous regions of different transcripts. 

Theoretically all the tags should be generated from the 3’-most anchoring 

enzyme cutting site (DpnII in this study) in the transcripts. This is true in most cases 

in practice while sometimes tags are generated from other anchoring enzyme cutting 

sites due to internal priming and/or incomplete digestion with the anchoring enzyme 

(Asmann et al., 2009). Some of the studies only took the 3’-UTR sequences into 

account when mapping the tags (Taft et al., 2009). Such methods may cause biases 

because 1) some tags are found mostly originated from anchoring enzyme cutting 

sites other than the 3’-most ones in some transcripts (Asmann et al., 2009) and 2) the 

identification of 3’- boundary of the transcripts can be incorrect due to the lack of 
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well-curated full-length transcript sequences or the unidentified splicing isoforms. In 

this study, tags were found originated from DpnII cutting sites other than the 3’-most 

ones at a frequency that is not omittable (Figure 3.2C), so we only took 

unambiguously mapped tag sequences for further analysis regardless of whether they 

were originated from the 3’-most DpnII cutting sites. Leaving out all the ambiguously 

mapped tag sequences did result in a smaller amount of usable data. However, due to 

the depth of data generated by DGE, there were still as many as 80,604 unique tag 

sequences unambiguously mapped to one known/predicted transcript (Figure 3.2A). 

To get a more efficient use of the DGE data, certain algorithms developed for 

assigning ambiguously mapped SAGE tags to one transcript (Malig et al., 2006) can 

be used for further studies. 

3.5.3 Capturing the biology of inner ear hair cell regeneration by gene expression 

profiling 

One way to validate the gene expression profiling data is to see how well they 

correlate to the biological processes examined. By clustering analysis, we found the 

similarity between different expression profiles corresponded nicely with the 

morphological changes (see Chapter 2) observed during hair cell regeneration (Figure 

3.4A). In addition, the pathway analysis showed enriched biological processes based 

on the expression profiles further confirmed such correspondence (Figure 3.4A). In 

line with that, the number of genes with significant changes in their expression levels 

was the highest at 0 hpe and gradually decreased during regeneration (Figure 3.3B). 

It is known that similar regulatory mechanisms are shared by developmental and 

regenerative events in sensory epithelia of inner ears and the lateral line system (Ma 
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et al., 2008; Millimaki et al., 2007; Stone & Rubel, 1999; Woods et al., 2004). It is 

reasonable to predict that genes expressed during ear/lateral line development are 

more likely to play some roles during hair cell regeneration. Here we found an 

enrichment of genes known to be expressed in developing ears/lateral line system in 

the candidate genes identified based on their expression patterns during hair cell 

regeneration (Supplemental file 4), which serves as an indirect confirmation of the 

candidate genes with potential functions during hair cell regeneration. 

3.5.4 Potential functions of miRNAs in hair cell regeneration 

In addition to the protein-coding genes, comparison of the expression profiles 

also revealed the roles of miRNAs during hair cell regeneration. Most of the 

candidate miRNAs were down-regulated during regeneration (Table 3.4), suggesting 

an alleviation of inhibitory effects on their target genes, which corresponds nicely 

with the up-regulation in the majority of the protein-coding candidate genes.  

miRNAs are expressed during inner ear and lateral line development in mammals 

(Weston, Pierce, Rocha-Sanchez, Beisel, & Soukup, 2006) and zebrafish (Friedman 

et al., 2009; Li, Kloosterman, & Fekete, 2010; Wienholds et al., 2005). Most of the 

candidate miRNAs were detected in the ear and/or lateral line neuromasts in 

developing zebrafish (Table 3.4 comparing with data from Wienholds et al., 2005). 

Moreover, disruption of mir-182/183/96 cluster expression during zebrafish 

development results in abnormalities in hair cell production in the inner ear (otic 

vesicle) and lateral line neuromasts (Li et al., 2010). Previous studies have identified 

the involvement of many miRNAs in a variety of regenerative processes and many of 

the candidate miRNAs (or their mammalian homologs) are included. For example, 
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dre-mir-133 is down-regulated and dre-mir-21 is up-regulated during fin regeneration 

in zebrafish (Yin et al., 2008), which is the same as their expression patterns detected 

in our experiments (Table 3.4). Over-expression of dre-mir-133 after fin amputations 

attenuates regeneration by reducing blastemal cell proliferation (Yin et al., 2008). In 

mouse, mir-21 is up-regulated during the proliferative phase of liver regeneration 

(Marquez, Wendlandt, Galle, Keck, & McCaffrey, 2010). In addition, let-7, mir-21, 

and mir-29 were suggested as translational regulators during liver regeneration (Kren 

et al., 2009). let-7 is a blocker of self-renewal in embryonic stem cells (Melton, 

Judson, & Blelloch, 2010). During hair cell regeneration, dre-let-7b was down-

regulated at 0 hpe (Table 3.4), probably for unblocking cell division.  

3.5.5 Potential issues in DGE application 

3.5.5.1 Experimental design for DGE 

In this DGE experiment, each profile was generated by pooling tissue samples 

from ~40 fish. While sample pooling is known to cause bias in the detection of 

changes in gene expression level (Hegedős et al., 2009), it was unavoidable in this 

experiment due to the small size of the target tissue and the minimum total RNA 

required (2 µg) when the experiment was done in 2006. In addition, due to the 

relatively high cost of the DGE experiments in 2006, it was financially challenging to 

have multiple biological and/or technical replications. These difficulties in the early 

application of DGE will definitely have negative effects on the quantification and 

comparison of profiles. However, with the cost reduction of deep sequencing with 

NGS platforms and the improvement of tag preparation protocol and statistical 

analyses, these issues have been greatly alleviated. For future studies, more reliable 
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detection of changes in gene expression levels can be achieved by minimizing tissue 

pooling and performing biological and technical replications. 

3.5.5.2 Sampling for DGE 

The first issue with tissue preparation lies in the “contamination” from non-

sensory epithelial tissues due to the technical difficulties of manual dissection. It is 

possible that the expression changes detected in certain genes was due to different 

severity of such “contamination” in different biological samples. Because of the high 

sensitivity of DGE acquired by deep sequencing, such contamination would result in 

skewed expression profiles in DGE experiments (Hegedős et al., 2009) while it would 

probably not be picked up by other low-throughput techniques. It is possible to detect 

profiles with such “contamination” by comparing biological replications (Hegedős et 

al., 2009). On the other hand, we can not rule out the possibility that non-sensory 

epithelial tissues in the saccule also directly or indirectly involved in hair cell 

regeneration. 

It is note-worthy that noise exposure only killed a restricted region of hair cells in 

the saccular maculae (see Section 2.4). Even if only the saccular maculae had been 

used for profile generation and comparison, we would still be likely to detect changes 

in gene expression due to more “global” responses of the sensory epithelia induced by 

noise exposure, e.g. stress responses, in addition to the responses specifically induced 

by local hair cell death. It is unclear if those “global” responses are related to the hair 

cell regeneration, but any responses for the purpose of maintaining inner ear 

homeostasis would very likely be helpful in understanding hair cell regeneration. 



 

 73 
 

There was a 48 hour time lag between the onset of noise exposure and the first 

sampling time-point (0 hpe). A certain amount of hair cell death definitely took place 

before 0 hpe because dead hair cell debris was detected by hair cell marker labeling at 

0 hpe in the most severely damaged area. Meanwhile, supporting cells had started 

active cytoplasmic movements creating “scar formation” in response to the death of 

their neighboring hair cells (see Section 2.4.3). This suggests that the earliest 

responses triggered in the supporting cells by the first sign of hair cell death were 

likely missing from the transcriptional profiling results. These responses may be 

crucial for hair cell regeneration. In order to examine them, further studies are 

required that start sampling additional time-points between the onset and the ending 

of the noise exposure. 
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Chapter 4 Functional Studies of Stat3/Socs3 Signaling Pathway in 
Hair Cell Regeneration 

 

4.1 Background review 

4.1.1 Stat3 

4.1.1.1 Stat3 protein 

Signal transducer and activator of transcription 3 (stat3) is a member of a group 

of transcription factors that transduce signals from the cell membrane to the nucleus 

to regulate gene expression. It was first identified as a member of the gp130-mediated 

signaling pathway (Akira et al., 1994). Seven mammalian STATs have been 

identified: stat1-4, stat5a, 5b, and stat6 (Lim & Cao, 2006). Mammalian stat3 (as well 

as most other STATs) protein is composed of six domains: the N-terminal domain, 

the coiled-coil domain, the DNA binding domain, a linker, the SH2 domain, and the 

transcriptional activation domain (TAD). The N-terminal domain is involved in 

protein dimerization (Sasse et al., 1997). The coiled-coil domain is important for 

receptor-binding (Zhang, Kee, Seow, Fung, & Cao, 2000), nuclear import (Ma, 

Zhang, Novotny-Diermayr, Tan, & Cao, 2003), and nuclear export (Begitt, Meyer, 

van Rossum, & Vinkemeier, 2000). In addition, it also interacts with other proteins 

(Collum, Brutsaert, Lee, & Schindler, 2000; Lufei et al., 2003; Zhang, 

Wrzeszczynska, Horvath, & Darnell, 1999). The DNA binding domain recognizes 

and binds to the consensus binding sequences in the promoter: TTCCN2GAA 

(Kidder, Yang, & Palmer, 2008). It is also involved in binding to importins, which 
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mediate nuclear translocation of activated stat3 (Ma & Cao, 2006). The linker domain 

has been reported to be involved in the interaction between stat3 and GRIM-19 which 

negatively regulates stat3 activity (Lufei et al., 2003). The SH2 domain is the most 

conserved region in all of the STAT genes. It is essential for receptor binding (Stahl 

et al., 1995), stat3 activation (Heim, Kerr, Stark, & Darnell, 1995; Inoue, Minami, 

Matsumoto, Kishimoto, & Akira, 1997), and dimerization (Becker, Groner, & Muller, 

1998; Shuai et al., 1994). The phosphorylation of a conserved tyrosine residue (Y705 

in human STAT3) is considered as a requirement for stat3 activation in most cases 

studied. The TAD domain, on the other hand, is the least conserved region. In 

addition to activating transcription (Sasse et al., 1997), it also contains a conserved 

serine residue (S727 in human STAT3) and a conserved lysine residue (K685 in 

human STAT3). Phosphorylation of the serine residue can regulate stat3 activity 

(Decker & Kovarik, 2000) and acetylation of lysine residue is considered critical for 

stabilizing stat3 dimers (Yuan, Guan, Chatterjee, & Chin, 2005). 

There are three isoforms of the STAT3 protein in humans, a result of alternative 

splicing. STAT3 isoform 1 (NP_644805) is the longest version of protein, consisting 

of 770 aa. STAT3 isoforms 2 (NP_003141) and 3 (NP_998827) lack amino acid 

residues in N-terminus and C-terminus respectively.  Isoform 3 is of special interest 

to researchers because the truncation in the C-terminus results in no TAD in the 

protein. Some fragments of stat3 protein generated by proteolytic digestion have been 

found in different cell types with putative functions in transcription regulation 

(Darnowski et al., 2006; Hevehan, Miller, & Papoutsakis, 2002; Xia et al., 2001). 

4.1.1.2 Stat3 activation 
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Stat3 is activated in response to various extracellular signaling molecules, 

including cytokines and growth factors. Interleukin 6 (IL-6) was the first one to be 

identified (Akira et al., 1994). Other cytokines include IL-5 (Stout, Bates, Liu, 

Farrington, & Bertics, 2004), 9-12 (Demoulin et al., 1996; Jacobson et al., 1995; 

Williams, Bradley, Smith, & Foxwell, 2004; Yanagisawa et al., 2000), 21 (Wei, 

Laurence, Elias, & O'Shea, 2007), 22 (Radaeva, Sun, Pan, Hong, & Gao, 2004), 27 

(Lang, 2005), Interferon gamma (IFN-γ) (Kordula, Bugno, Goldstein, & Travis, 

1995), Ciliary Neurotrophic Factor (CNTF) (Ji et al., 2004), Macrophage 

Inflammatory Protein 1 alpha (MIP-1α) (Wong & Fish, 1998), Regulated on 

Activation Normal T cell Expressed and presumably Secreted (RANTES) (Wong & 

Fish, 1998). 

Growth factors that can activate stat3 include Epidermal Growth Factor (EGF) 

(Zhong, Wen, & Darnell, 1994), Granulocyte Colony-Stimiulating Factor (G-CSF) 

(Nishiki et al., 2004), Platelet-Derived Growth Factor (PDGF) (Vignais, Sadowski, 

Watling, Rogers, & Gilman, 1996), to name a few. In addition, some other factors 

have also been reported to trigger stat3 activation, e.g. UVB exposure (Ahsan, Aziz, 

& Ahmad, 2005) and osmotic shock (Gatsios et al., 1998). Once activated, stat3 

forms dimers and translocates into the nucleus to execute the function of a 

transcription factor (Sadowski & Gilman, 1993; Wegenka, Buschmann, Lutticken, 

Heinrich, & Horn, 1993). The nuclear translocation is mediated by importins (Liu, 

McBride, & Reich, 2005; Ma & Cao, 2006; Ushijima et al., 2005). The downstream 

transcriptional targets of stat3 include cyclin D1 (ccd1) (Masuda et al., 2002), bcl-xl 

(Catlett-Falcone et al., 1999), bcl6 (Tsuyama et al., 2005), c-myc (Kiuchi et al., 
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1999), survivin (Gritsko et al., 2006), miRNA-21 (Loffler et al., 2007), suppressors of 

cytokine signaling (SOCS) (Auernhammer, Bousquet, & Melmed, 1999; Naka et al., 

1997; Xu, Sylvester, Tighe, Chen, & Gudas, 2008), as well as stat3 itself (Kidder et 

al., 2008).  

4.1.1.3. Regulation of stat3 activity by phosphorylation 

In most studies, stat3 is considered activated when the tyrosine residue in the 

SH2 domain is phosphorylated (Lim & Cao, 2006). The phosphorylation is mediated 

by receptor and non-receptor protein tyrosine kinases. Most of the kinases are the 

corresponding receptors or related kinases to the cytokines and growth factors 

mentioned above. Those kinases include Janus Kinases (JAKs) (Lütticken et al., 

1994), EGF receptor (Garcia et al., 1997), PDGF receptor (Vignais & Gilman, 1999), 

Src (Yu et al., 1995), and so on.  

In addition to the tyrosine residue, the serine residue in the TAD is also a target 

for phosphorylation in response to similar extracellular factors (Jain, Zhang, Kee, Li, 

& Cao, 1999; Wen, Zhong, & Darnell, 1995; Yokogami, Wakisaka, Avruch, & 

Reeves, 2000). In STATs, there is a highly conserved PMSP motif in the least 

conserved domain, TAD (Wen et al., 1995). The serine residue in the motif is 

phosphorylated by Mitogen Activated Protein Kinases (MAPKs) (Chung, Uchida, 

Grammer, & Blenis, 1997; Plaza-Menacho et al., 2007), p38 (Zauberman, Zipori, 

Krupsky, & Ben-Levy, 1999), mammalian target of rapamycin (mTOR) (Yokogami 

et al., 2000), and PKC isoforms (Gartsbein et al., 2006; Aziz et al., 2007) to name a 

few. However, the regulatory mechanism seems to be more complicated and context-

dependent. For example, the phosphorylation of serine residue was not considered as 
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obligatory to stat3 activation but as an amplifier to the tyrosine phosphorylation for 

stat3 to achieve maximal transcriptional activity in COS-1 cells (Wen et al., 1995). 

However, a decrease in stat3 transcriptional activity was found later in the presence of 

serine phosphorylation in different cells, e.g. NIH3T3 (Jain, Zhang, Fong, Lim, & 

Cao, 1998). The different effects of serine phosphorylation are summarized by 

Decker & Kovarik (2000). The serine phosphorylation-mediated increase in stat3 

transcriptional activity may be explained by the increase in DNA binding (Ng & 

Cantrell, 1997; Zhang, Blenis, Li, Schindler, & Chen-Kiang, 1995) and/or in nuclear 

translocation (Qin et al., 2008). There is no evidence of an enhancement in tyrosine 

phosphorylation resulted from serine phosphorylation so far. On the other hand, a 

decrease in tyrosine phosphorylation as a result of serine phosphorylation has been 

reported (Chung et al., 1997). However, the presence of serine phosphorylation 

doesn't seem to account for all cases of down-regulation in tyrosine phosphorylation: 

a decrease in tyrosine phosphorylation was also detected as independent of serine 

phosphorylation (Sengupta, Talbot, Scherle, & Ivashkiv, 1998). In addition, contrary 

to the previous idea of serine phosphorylation as an additive regulatory factor to 

tyrosine phosphorylation, the phosphorylated serine residue can activate stat3 

activation independent of tyrosine phosphorylation (Kim, Yoon, & Chen, 2009; Lim 

& Cao, 2006; Ng & Cantrell, 1997; Qin et al., 2008). Meanwhile, constitutive 

activated stat3 is only phosphorylated at serine residue, but not at tyrosine residue in 

some cancer cells (Hazan-Halevy et al., 2010). Although the relationship between 

serine phosphorylation and tyrosine phosphorylation remains unclear, stat3 activated 
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by either residue share some common transcriptional targets, e.g. c-myc, survivin, and 

socs3. (Kim et al., 2009; Qin et al., 2008). 

Phosphorylation of stat3 protein has been considered as a requirement for stat3 

activation. However, several publications have claimed the activation of stat3 

signaling without stat3 protein phosphorylation (Yang et al., 2005, 2007; Yang & 

Stark, 2008). It is note-worthy that most of the studies did not take into account the 

possibility of stat3 activation by serine phosphorylation, so whether those activated 

stat3 protein was really “unphosphorylated stat3 protein” remains questionable. In 

Drosophila, unphosphorylated stat92E binds to heterochromatin protein 1 (HP1) and 

stabilizes heterochromatin (Shi et al., 2008). Phosphorylation of stat92E by JAK 

causes dispersal of stat92E and HP1 from heterochromatin, resulting in 

deconstruction of the heterochromatin structure and facilitation of transcription (Shi 

et al., 2006, 2008). Intriguing as it is, such epigenetic function of unphosphorylated 

stat92E in Drosophila has not yet been detected in vertebrates. 

The phosphorylation of stat3 protein is reversible. Tyrosine phosphorylation can 

be reversed by Protein Tyrosine Phosphatase Receptor D (PTPRD) (Veeriah et al., 

2009) and T (PTPRT) (Zhang et al., 2007) in the cytoplasm and by T-cell Protein 

Tyrosine Phosphatase in the nucleus (Tc-PTP) (Tetsuya Yamamoto et al., 2002). 

Serine phosphorylation can be reversed by Protein Phosphatase 2A (PP2A) in the 

nucleus (Woetmann et al., 1999). 

4.1.1.4 Regulation of stat3 activity by other mechanisms 

In addition to phosphorylation, stat3 activity can also be regulated by acetylation. 

Yuan and colleagues (2005) first reported that the acetylation of a lysine residue in 
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the TAD domain (K685 in human STAT3) was critical for forming stable stat3 

dimers. The acetylation of stat3 was mediated by histone acetyltransferase p300 and 

reversed by type I histone deacetylase (Yuan et al., 2005). In addition, CD44 could 

form a complex with stat3 and p300 to elicit the acetylation and nuclear translocation 

(Lee, Wang, & Chen, 2009). 

The activity of stat3 can also be modulated by interacting with proteins other 

than kinases or phosphatases. For example, Protein Inhibitor of Activated STAT 3 

(PIAS3) (Chung et al., 1997) and suppressors of cytokine signaling (SOCS, see 

below) negatively regulate stat3 activity. 

STAT3 protein isoform 3 lacks the TAD due to alternative splicing. It is also 

activated by tyrosine phosphorylation (Caldenhoven et al., 1996). It was first 

considered as a negative regulator of STAT3 isoform 1 in COS cells (Caldenhoven et 

al., 1996). However, later studies show that STAT3 protein isoform 3 is capable of 

activating the transcription of some known stat3-target genes in vivo in the presence 

of IL-6 (Maritano et al., 2004).  

4.1.1.5 Nuclear stat3 vs. cytoplasmic stat3 

While stat3 activation sometimes requires the tyrosine phosphorylation of stat3 

protein, the nuclear import of stat3 is independent of tyrosine phosphorylation and 

possibly independent of stat3 dimerization (Liu et al., 2005). Liu and colleagues 

(2005) transfected cells with DNA construct encoding mutated stat3 protein which 

could neither be phosphorylated at the tyrosine residue nor form dimers with mutated 

or endogenous STAT proteins and detected nuclear retention of the mutated stat3 

protein. Whether such observation can be made in other cells remains unknown. 
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Nuclear import of stat3 is mediated by importin-α/β pathway, in which stat3 interacts 

with importin-α3 (Liu et al., 2005) and possibly other importin-α proteins (Ma & Cao, 

2006; Ushijima et al., 2005). Nuclear export of stat3 is mediated by the interaction 

between the coiled-coil domain of stat3 and Chromosomal Region Maintenance 1 

(CRM1) (Sato et al., 2005). 

It has been taken for granted that stat3 can only function as a transcription factor 

in the nucleus. However, stat3 has been found in the mitochondria as a regulator of 

mitochondrial metabolism (Wegrzyn et al., 2009). Mutated stat3 protein that can not 

be imported into the nucleus is exclusively targeted to mitochondria and facilitates 

Ras-dependent malignant transformation (Gough et al., 2009). In addition, 

cytoplasmic stat3 also directly interacts with stathmin and Superior Cervical ganglia 

protein 10-LIke Protein (SCLIP) to adjust the microtubule stability and regulate cell 

morphology and cell migration (Ng, Lim, Lin, Zhang, & Cao, 2010; Ng et al., 2006; 

Verma et al., 2009). 

4.1.1.6 Biological functions of stat3 

Stat3 is known as a crucial gene in multiple biological processes, including 

mitogenesis, oncogenesis, metastasis, immune response, cell survival, cell 

differentiation, tissue repair, and pluripotency maintenance. Stat3-null mice are 

embryonically lethal at E6.5-7.5 (Takeda et al., 1997). Dominant-negative mutation 

in human STAT3 causes Hyper-IgE Syndrome (Minegishi et al., 2007). Hyper-

activation of stat3 is responsible for oncogenesis, metastasis, and inflammation 

(Aggarwal et al., 2009). First identified as an Acute Phase Response Protein (APRP) 

(Akira et al., 1994), stat3 has been found to play an important role in the 
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inflammatory response mediated by various cytokines, e.g. IL-6 (Zhong et al., 1994) 

and IL-11 (Ernst et al., 2008). Stat3 is also involved in oncogenesis through its 

downstream targets, e.g. cyclin D1, which promote cell proliferation (Masuda et al., 

2002). In addition, the interaction between stat3 and c-myc and pim-1 also contributes 

to the stat3-mediated enhancement of cell proliferation (Shirogane et al., 1999). The 

survival-promoting effects of stat3 is executed by a group of its down-stream targets, 

e.g. bcl-xl (Catlett-Falcone et al., 1999), bcl2 (Zushi et al., 1998), bcl6 (Tsuyama et 

al., 2005), survivin (Mahboubi et al., 2001), and Mcl-1 (Puthier et al., 1999), all of 

which encode anti-apoptotic proteins. Stat3 also mediates metastasis via 

transcriptional regulation of related genes, e.g. Matrix Metalloproteinases (MMPs) 

(Xie et al., 2004), MUC1 (Gaemers, Vos, Volders, Valk, & Hilkens, 2001), and 

COOH terminal tensin-like focal adhesion kinase (Cten) (Barbieri et al., 2010). In 

mouse embryonic stem cells (ESCs), stat3 binds to the promoter/enhancer region of 

multiple genes crucial for the maintenance of the stem cell state (Kidder et al., 2008).   

4.1.1.7 Stat3 in non-mammalian animals 

Homologs to mammalian stat3 have been found in vertebrates, e.g. zebrafish 

(Oates et al., 1999), frog (Nishinakamura et al., 1999), and chicken (Caldwell et al., 

2004), and invertebrates, e.g. stat92E in Drosophila (Xie et al., 2004). In zebrafish, 

the stat3 gene is located on chromosome 3 (Oates et al., 1999). Two alternative 

splicing isoforms of stat3 have been reported in zebrafish, a longer version encoding 

806 aa and a C-terminal truncated one encoding 720 aa (Oates et al., 1999). The 

amino acid sequence of the longer isoform shares 85% identity with STAT3 isoform 

2 (STAT3-alpha) in human and the residues important for regulating stat3 activity are 
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conserved (Y708, S751, and K686 in zebrafish stat3). The shorter isoform seems 

lacking the TAD domain. In zebrafish, stat3 expression starts as early as the 

midblastula transition (MBT) stage (Oates et al., 1999). Knocking-down stat3 during 

early development disrupted the epithelial-mesenchymal transition (EMT) during 

gastrulation (Yamashita et al., 2002), in accordance with the known functions of stat3 

in organogenesis, healing, and metastasis in mammals. The function of stat3 in the 

inner ear is barely studied in mammals except that it was detected in the nuclei of 

outer hair cells in the organ of Corti in neonatal mice (Hertzano et al., 2004). Stat3 

expression is detected by in situ hybridization in the otic vesicle and lateral line 

neuromasts during zebrafish early development (Oates et al., 1999; Thisse & Thisse, 

2004), while its function remains unclear. 

4.1.2 Socs3 

4.1.2.1 Socs3 protein 

Suppressor of cytokine signaling 3 (socs3) was first identified as a STAT-

induced-STAT inhibitor (Minamoto et al., 1997). It is a member of the SOCS family 

proteins, socs1-7 and cytokine inducible SH2-containing protein (cis), which suppress 

cytokine signaling via inhibiting the STAT/JAK pathway downstream of the cytokine 

receptors (Croker, Kiu, & Nicholson, 2008; Piessevaux, Lavens, Peelman, & 

Tavernier, 2008; Starr et al., 1997). All members in the family contain three domains: 

a central SH2 domain flanked by a variable N-terminal region and a conserved C-

terminal SOCS box (Piessevaux et al., 2008). There is a kinase inhibitory region 

(KIR) in the N-terminal region of socs1 and socs3 that is responsible for binding to 

the tyrosine kinase domain in Jaks and thus blocking their kinase activity (Sasaki et 
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al., 1999). The SH2 domain is involved in binding to the phosphotyrosine motif of 

interacting proteins, e.g. Y1007 in JAK2 (Sasaki et al., 1999). In addition, two small 

regions in the N- and C-termini (N- and C-extended SH2 domain, N-ESS and C-ESS) 

are also important for stabilizing binding (Babon et al., 2006). The SOCS box binds 

to an E3 ubiquitin ligase complex, an E1 ubiquitin-activating enzyme, and an E2 

ubiquitin-conjugating enzyme, which enables the poly-ubiquitination and degradation 

of SOCS proteins as well as their binding partners (Piessevaux et al., 2008). 

4.1.2.2 Socs3 activity in cytokine signaling pathways 

Socs3 is involved in the signaling pathways initiated by specific cytokines, 

including GCSF (Croker et al., 2004), IL-6 (Croker et al., 2003; Yasukawa et al., 

2003), IL-23 (Chen et al., 2006), leptin (Mori et al., 2004), and Leukemia Inhibitory 

Factor (LIF) (Robb et al., 2005). Its SH2 domain shows only a weak affinity with 

Y1007 in JAK2 (Sasaki et al., 1999), but preferably binds to the phosphorylated 

tyrosine residue in receptor subunits, e.g. Y757 in gp130 (Nicholson et al., 2000). 

Surprisingly, the SH2 domain in socs3 can also bind to tyrosine phosphatase SHP2, 

suggesting multiple functions for the protein (De Souza et al., 2002). Socs3 can be 

transcriptionally activated by STATs, while it inhibits STAT/JAK signaling in a 

negative-feedback loop (Murray, 2007). It can also be epigenetically silenced by 

methylation of the CpG islands in its promoter (He et al., 2003). At post-translational 

level, socs3 activity can be regulated by phosphorylation of its tyrosine residues in the 

SOCS box (Y204 and Y221) in response to many cytokines and growth factors, e.g. 

IL-6 (Sommer et al., 2005) and insulin (Peraldi, Filloux, Emanuelli, Hilton, & 

Obberghen, 2001). The phosphorylated socs3 fails to interact with elongin C, which 
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destabilizes the socs3 protein (Haan et al., 2003). Meanwhile, phosphorylated socs3 

inhibits p120, a Ras inhibitor, in favor of cell survival and proliferation mediated by 

the Ras-MAPK pathway (Cacalano, Sanden, & Johnston, 2001). In addition to 

tyrosine phosphorylation, the unstructured PEST sequence in C-ESS also contributes 

to the turnover of socs3 (Sasaki et al., 1999). 

4.1.2.3 Biological functions of socs3 

Similar to stat3, socs3 is also involved in multiple biological processes. It 

modulates a variety of processes by dampening cytokine-induced STAT/JAK-

dependent responses in cells (Croker et al., 2008).  The Socs3-null mouse is 

embryonically lethal possibly due to excessive erythropoiesis (Marine et al., 1999) or 

abnormal placenta development (Roberts et al., 2001). As a key negative regulator of 

cytokine-induced signaling, it controls the intensity and duration of immune 

responses. When socs3 is conditionally knocked out in hematopoietic and endothelial 

cells in mouse, the animal dies young due to severe inflammatory lesions (Croker et 

al., 2004). Elevated level of socs3 is associated with human inflammatory diseases, 

e.g. atopic dermatitis (Ekelund et al., 2006) and rheumatoid arthritis (Shouda et al., 

2001). Hyper-silencing of socs3 by methylation and the accompanying hyper-

activation of STAT/JAK signaling have been found in a variety of tumor cells and 

considered as one of the explanations for the abnormal proliferation of those cells (He 

et al., 2003; Martini et al., 2008). 

4.1.2.4 Socs3 in zebrafish 

The zebrafish homologs to mammalian socs3 are socs3a and socs3b, sharing 

55% and 59% identity respectively with human SOCS3 protein and 67% identity with 
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each other. According to a very limited number of publications, socs3a/b was found 

playing a similar role in zebrafish as in mammals: a negative regulator of cytokine-

induced STAT/JAK signaling (Studzinski, Almeida, Lanes, Figueiredo, & Marins, 

2009; Yamashita et al., 2004). 

4.1.3. Stat3 and socs3 in regeneration 

Both stat3 and socs3 contribute to the regenerative process in many organs, either 

working with each other or with other proteins involved in STAT/JAK signaling 

pathways.  

4.1.3.1 Stat3 and socs3 in liver regeneration 

In liver, stat3 is rapidly activated after hepatectomy (Salazar-Montes, Ruiz-

Corro, Sandoval-Rodriguez, Lopez-Reyes, & Armendariz-Borunda, 2006; Taub, 

Greenbaum, & Peng, 1999). In addition, liver-specific knockout of stat3 impaired 

hepatocyte mitogenic events and disrupted liver regeneration severely (Li, Liang, 

Kellendonk, Poli, & Taub, 2002). Originally, the studies on stat3 function in liver 

regeneration focused on the IL-6-induced gp130-mediated activation of stat3 because 

IL-6 is a well-known activator of stat3 signaling (Akira et al., 1994). IL-6-/- mice 

showed disrupted liver regeneration and lack of stat3 activation (Cressman et al., 

1996). In addition, after hepatectomy, mice with liver-specific knockout of stat3 

showed abnormal immediate-early gene (IEG) activation largely correlated with 

similar abnormalities observed in IL-6-/- mice (Li et al., 2002). Socs3 has been 

identified as a negative regulator of IL-6-induced stat3 signaling in undamaged liver 

(Croker et al., 2003). IL-6 signaling during liver regeneration induced rapid up-

regulation of socs3, which correlated with the subsequent down-regulation of 
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phosphorylated stat3 and therefore terminated IL-6 signaling (Campbell et al., 2001). 

Hepatocyte-specific knockout of socs3 led to an increase in DNA synthesis and cell 

cycle progression and thus accelerated liver regeneration in mice, which was 

accompanied by an enhancement in IL-6/stat3 signaling (Riehle et al., 2008). 

Meanwhile, keeping the cytokine signaling tempered by the negative feedback of 

socs3 on stat3 signaling is crucial for liver regeneration (Taub, 2004). This idea is 

further supported by the observation that over-expression of IL-6 inhibited 

regeneration after hepatectomy in mice (Wüstefeld, Rakemann, Kubicka, Manns, & 

Trautwein, 2000). In addition to IL-6, other cytokines also play a role in liver 

regeneration, which is through stat3 and modulated by socs3 as well. For example, 

IL-22 promotes liver cell regeneration by increasing hepatic cell proliferation and 

hepatocyte migration through the activation of Akt and STAT signaling, which is 

abrogated by SOCS-1/3 over-expression (Brand et al., 2007). 

It is worth noting that the conditional knockout of gp130 in mice severely 

impaired early activation of stat3 but not DNA synthesis after partial hepatectomy 

(Wüstefeld et al., 2003). In contrast, mice with the conditional knockout of stat3 

showed severe deficits in DNA synthesis in liver regeneration (Li et al., 2002), 

indicating another IL-6/gp130-independent mechanism for late stat3 activation to 

initiate DNA synthesis. Two growth factors, EGF (mediated by EGFR) and 

hepatocyte growth factor (HGF, mediated by met) have been proposed to induce stat3 

activation during liver regeneration (Seki et al., 2008) because they have been shown 

to induce stat3 signaling in liver cells (Ruff-Jamison et al., 1994; Schaper et al., 

1997). While a conditional knockout of either met (Borowiak et al., 2004) or EGFR 
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(Natarajan, Wagner, & Sibilia, 2007) was adequate to disrupt DNA synthesis and cell 

cycle progression after hepatectomy, stat3 activation after hepatectomy was not 

affected in the EGFR knockout (Natarajan et al., 2007) and was even prolonged in the 

met knockout (Borowiak et al., 2004). Although both EGF and HGF were able to 

induce stat3 activation in hepatocytes (Seki et al., 2008), it still remains unclear if 

either of them is responsible for stat3 activation during liver regeneration. 

Interestingly, IL-6 level remains correlated to stat3 activity in both conditional 

knockout studies (Borowiak et al., 2004; Natarajan et al., 2007), suggesting a closer 

link between IL-6 and stat3 activity and a possible compensatory effect of IL-6/stat3 

to HGF/met signaling in liver regeneration. 

4.1.3.2 Stat3 and socs3 in neuronal regeneration 

Stat3 and socs3 are involved in neuronal regenerative processes. In spinal cord, 

stat3 activation was found immediately after compression (Yamauchi et al., 2006). 

Conditional knockout of stat3 in astrocytes resulted in a decrease in astrocyte 

migration and more severe motor deficits after spinal cord injury, while up-regulation 

of stat3 signaling by conditional knockout of socs3 had the opposite effects (Okada et 

al., 2006). Axon injury also leads to stat3 activation (Lee, Neitzel, Devlin, & 

MacLennan, 2004) and socs3 expression (Miao et al., 2006). In retinal ganglion 

neurons (RGN), CNTF-induced activation of stat3 signaling promotes axon 

regeneration (Müller, Hauk, Leibinger, Marienfeld, & Fischer, 2009; Park, Luo, 

Hisheh, Harvey, & Cui, 2004). Accordingly, conditional knockout of socs3 or gp130 

in RGN promoted the axon regeneration (Smith et al., 2009). Similar observations 

have also been found in sensory neurons and motoneurons (Lee et al., 2004; Qiu, 
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Cafferty, McMahon, & Thompson, 2005; Toth et al., 2008). CNTF-induced activation 

of stat3 signaling also promoted the regeneration of photoreceptors in retina (Kassen 

et al., 2009). 

4.1.3.3 Stat3 and socs3 in skin regeneration 

Stat3 and socs3 are involved in epithelial cell regeneration in skin and other inner 

organs (e.g. lung (Kida et al., 2008) and intestine (Pickert et al., 2009)). The skin 

regeneration after wounding requires the migration, proliferation, and differentiation 

of keratinocytes (Sano, Chan, & DiGiovanni, 2008). Stat3 activation was detected at 

the wound edge in mouse skin (Sano et al., 2008). Mice with keratinocyte-specific 

knockout of stat3 showed delayed wound healing as a result of the failure in 

keratinocyte migration instead of the failure in keratinocyte proliferation (Sano et al., 

1999). The stat3 signaling in keratinocyte migration was induced by growth factors 

and cytokines (EGF, transforming growth factor-α, heparin-binding EGF-like factor, 

HGF, and IL-6 (Tarnawski & Jones, 1998; Tokumaru, Sayama, Shirakata, et al., 

2005; Tokumaru, Sayama, Yamasaki, et al., 2005). One of the effectors of stat3 

signaling is p130cas which regulates the cell adhesiveness and thus migration ability 

(Kira et al., 2002). Socs3 was also found to be induced during acute wound 

inflammation (Goren, Linke, Muller, Pfeilschifter, & Frank, 2005). gp130-stat3 

signaling was up-regulated in the wound healing in socs3-deficient mice, 

accompanied by a surprisingly impaired healing process (Zhu et al., 2008). 

Hyperactivation of gp130-stat3 signaling by depressing socs3 activity resulted in 

hyperproliferating keratinocytes, which secreted cytokines and chemokines to 

prolong the immune response and delay the healing process (Zhu et al., 2008). Both 
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hypo- and hyper-activation of stat3 signaling pathway result in impaired wound 

healing in skin, suggesting a critical balance needed to be achieved, at least in part by 

the negative feedback from socs3, for normal wound healing. 

4.1.3.4 Stat3 and socs3 in regeneration in non-mammals 

The importance of stat3 and socs3 in regeneration has also been found in 

nonmammalian vertebrates and invertebrates. Stat3 expression was found to be up-

regulated in dividing cells during zebrafish retinal photoreceptor regeneration 

(Kassen et al., 2009). Stat92E, the Drosophila homolog to vertebrate stat3, was 

required in the epithelial stem cells of the midgut after cell damage caused by bacteria 

(Jiang et al., 2009). Socs3 was found to be required for epithelial wound healing in 

Xenopus embryos (Kuliyev, Doherty, & Mead, 2005). It is also found to be up-

regulated in the regeneration of fins (Schebesta, Lien, Engel, & Keating, 2006) and 

retinas (Qin, Barthel, & Raymond, 2009) of zebrafish. 

4.1.4. Background summary 

As a transcription factor, stat3 remains latent in the cytoplasm until 

cytokine/growth factor-induced and kinase-mediated activation. The activity of stat3 

is regulated through multiple complicated mechanisms in a context-dependent 

manner. One way to negatively regulate stat3 activity is through SOCS proteins, one 

of which is socs3. Stat3 can activate the transcription of socs3 gene, the protein 

product of which inhibits stat3 activity and completes a negative feedback loop 

between stat3 and socs3. Both stat3 and socs3 play important roles in development, 

tumorigenesis, immune responses, as well as regeneration. Here their functions in the 

regeneration of liver, nervous system, and skin are reviewed in detail. In addition to 
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regeneration, stat3 also has protective functions in injured liver (Taub, 2004) and in 

the nervous system (Dziennis & Alkayed, 2008). For example, stat3 signaling 

induced by IL-6 can protect hepatocytes in injured liver by up-regulating genes with 

anti-apoptotic functions as well as those with antioxidant functions (Haga et al., 

2003).  

Although stat3 activation is required for a variety of regenerative processes, 

hyperactivation of stat3, either by over-expressing IL-6 (Wüstefeld et al., 2000) or by 

depressing socs3 (Zhu et al., 2008), hampers normal regeneration. Because 

hyperactivation of stat3 and/or silencing of socs3 contribute to both inflammation 

(Gao & Ward, 2007; Zhu et al., 2008) and tumorigenesis (Baltayiannis, Baltayiannis, 

& Tsianos, 2008; Yu et al., 2009), the proper functioning of the self-regulating 

stat3/socs3 pathway seems crucial for a well-controlled regeneration in various 

organs. 

4.2 Experiment overview 

Stat3 and socs3 were found transcriptionally up-regulated during inner ear hair 

cell regeneration in adult zebrafish (Supplemental file 3). It is known that stat3 and 

socs3 form a self-restrictive feedback loop which plays an important role in a variety 

of regenerative processes (See Section 4.1.3), so we tested if the stat3/socs3 pathway 

was involved in hair cell regeneration in zebrafish.  

Instead of determining the role of the stat3/socs3 pathway in inner ear hair cell 

regeneration, we performed functional studies in the lateral line system, another 

mechanosensory structure in zebrafish highly similar to the inner ear sensory epithelia 

and used for detecting water movements over the body (McHenry et al., 2009; 
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Montgomery et al., 2000). The neuromasts in the lateral line are composed of hair 

cells and supporting cells similar to those in the inner ear sensory epithelium 

(Nicolson, 2005). In addition, the hair cell regeneration in the lateral line neuromasts 

shares similar molecular mechanisms with that in the inner ear (Behra et al., 2009; 

Harris et al., 2003; Ma et al., 2008), Rubel, and Raible. Last but not least, the 

neuromasts are located on the surface of the fish body, making them a convenient 

system for testing the functions of candidate genes involved in hair cell regeneration. 

My results suggest that stat3/socs3 signaling is triggered during hair cell 

regeneration in the lateral line neuromasts. Pharmacological up-regulation of stat3 

signaling accelerates hair cell regeneration by promoting supporting cell division. In 

addition, stat3 also seems to be involved in development and stem cell maintenance 

of the neuromasts. 

4.3 Materials and methods 

4.3.1 Quantification of hair cell numbers and mitotic events and characterization of 

stat3’s involvement during lateral line hair cell regeneration 

Five days post fertilization (dpf)-old zebrafish larvae were treated with CuSO4 

(10 µM in system water) for 2 h to kill the lateral line hair cells as previously 

described (Hernández et al., 2007). The larvae were then kept at 28.5 ºC up to 72 h 

post CuSO4 treatment (hpt). For hair cell quantification, the Tg(pou4f3:GFP) larvae 

(Xiao et al., 2005) were raised in Holtfreter’s buffer containing S3I-201 (EMD 

Biosciences, 40 µL stock in DMSO/10 mL buffer, final concentration = 400 µM) or 

DMSO (Sigma, 40 µL/10 mL buffer). Lateral line hair cells (GFP-positive cells) in 
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living larvae were quantified at 24, 48, and 72 hpt using an inverted epifluorescence 

microscope (Axiovert200M from Zeiss). In addition, myosin VI antibody staining 

was also used as an alternative for hair cell quantification. The mitotic events during 

lateral line hair cell regeneration were quantified by Bromo-deoxyuridine (BrdU) 

incorporation assays (Ma et al., 2008) using Tg(scm1:GFP) larvae (Behra et al., 

2009). BrdU was dissolved in DMSO and added to Holtfreter’s buffer to achieve a 

final concentration of 10 mM. In addition, Tg(scm1:GFP) larvae (Behra et al., 2009) 

were also collected at different time-points for immunohistochemical staining to 

examine the involvement of stat3 during hair cell regeneration. 

4.3.2 Whole-mount in situ hybridization 

Fragments of the target cDNAs were amplified with PCR primers containing T7 

or T3 promoter in their 5’-ends. All primers are listed in Table 4.1. The anti-sense 

RNA probes were synthesized with DIG RNA labeling kit (Roche) according to 

manufacturer’s instructions. Whole-mount in situ hybridization of zebrafish embryos 

was done as previously described (Oxtoby & Jowett, 1993) with modification. Instead 

of using 1-phenyl-2-thiourea (PTU) to prevent pigmentation in living embryos, H2O2 

(10%) was used to bleach pigments after rehydration of the fixed embryos. The 

hybridization temperature was 60 ºC. 
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Table 4.1. Sequences of primers and morpholinos 

Experiment Target 
gene Sequence 

qRT-PCR atoh1a F: 5’-GCG AAG AAT GCA CGG ATT GAA CCA-3’ 
R: 5’-TGC AGG GTT TCG TAC TTG GAG AGT-3’ 

bactin1 F: 5’-GAC CCA GAC ATC AGG GAG TGA TGG-3’ 
R: 5’-AGG TGT GAT GCC AGA TCT TCT CCA TG-3’ 

bcl6 F: 5’-TGT TCT GCT CAA CCT GAA CCG ACT-3’ 
R: 5’-TAG AAG AGC CCA CTG CAT GCC ATA-3’ 

mmp2 F: 5’-GCT GGT GTG CAA CCA CTG AAG ATT-3’ 
R: 5’-AAG ACA CAG GGT GCT CCA TCT GAA-3’ 

mmp9 F: 5’-AAA TCG AGA AGC TCG GCC TAC CAA-3’ 
R: 5’- TCC TCT GTC AAT CAG CTG AGC CTT-3’ 

socs3a F: 5’-TAA AGC AGG GAA GAC AAG AGC CGA-3’ 
R: 5’-TGG AGA AAC AGT GAG AGA GCT GGT-3’ 

stat3 F: 5’-AGT GAA AGC AGC AAA GAG GGA GGA-3’ 
R: 5’-TGA GCT GCT GCT TAG TGT ACG GTT-3’ 

In situ 
hybridization 

probe 
synthesisa 

stat3 F: 5’-ATT AAC CCT CAC TAA AGG GAT ACT GGA 
ACA CAA CCT GCA GGA CA-3’ 
R: 5’-TAA TAC GAC TCA CTA TAG GGA GAT CGA 
CCC ACG TGA ATG TGA TTC CT-3’ 

 socs3a F: 5’-ATT AAC CCT CAC TAA AGG GAA AGA CTG 
TGA ACG GAC ACA CGG AT-3’ 
R: 5’-TAA TAC GAC TCA CTA TAG GGA GAA GTG 
TCT GGC ATG AGA AGG CTG AA-3’ 

Morpholino socs3ab MO1: CCCTGAGCTGCCGGGAAGCAGATCT 
MO2: CGTGTAATATACAGAGTGTCGAGTC 

stat3c MO1: GCCATGTTGACCCCTTAATGTGTCG 
a. Underlined sequences are T3 (F) and T7 (R) promoters. 
b. Both morpholinos gave rise to similar phenotypes. Results reported here are from 

embryos injected with MO1. 
c. Stat3 MO sequence was synthesized according to Yamashita et al. (2002). 

4.3.3 Morpholino and mature mRNA injection 

The morpholino (MO) injections were done in fertilized eggs of TAB-5 

(Amsterdam et al., 1999) and Tg(cldnb:GFP) (Haas & Gilmour, 2006) lines. MOs 

against stat3 and socs3a were injected at a concentration of 500 µM. The mature 

mRNA of socs3a was synthesized with a mMESSAGE mMACHINE kit (Ambion) 

and injected at a concentration of 37.8 ng/µL. Control injections were done with PBS 
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solution containing traces amounts of phenol red (Sigma). The sequences of all MOs 

are listed in Table 4.1. 

4.3.4 Immunohistochemistry 

The primary and secondary antibodies used included rabbit myosin VI antibody 

(Proteus biosciences, 1:200-dilution), mouse anti-BrdU with Alexa Fluor 546 

conjugates (Invitrogen, 1:200-dilution), goat GFP antibody (FITC-conjugated, 

Abcam, 1:200-dilution), rabbit STAT3pS727 (Abcam, 1:50-dilution) and Alexa Fluor 

568 (or 488) goat anti-rabbit IgG (Invitrogen, 1:1,000-dilution). Other common 

reagents included PTWD (1X PBS, 0.1% Tween-20 (Sigma), and 1% DMSO), 

blocking buffer (10 mg/mL bovine serum albumin (Sigma) and 10% goat serum 

(Vector laboratories) in PTWD), and staining buffer (1:5-dilution of blocking buffer 

in PTWD).  

Zebrafish embryos/larvae were anesthetized with 0.03% buffered MS-222 and 

fixed with 4% paraformaldehyde (Electron Microscopy Sciences) at 4°C overnight or 

at room temperature for 2 h. The fixed embryos were rinsed with PTWD for 3 times, 

10 min each time before different pretreatments according to the primary antibodies 

used. For myosin VI antibody staining, the embryos were incubated with distilled 

water for 1-3 h followed by acetone treatment (7 min at room temperature 5 dpf or 

younger embryos/larvae and 20 min at -20 ºC for 5 dpf+ larvae) and several rinses (1 

rinse with distilled water for 5 min and another 2 rinses with PTWD, 10min each 

time). For STAT3pS727 antibody, embryos were rinsed in distilled water for 5 min 

after acetone treatment and then incubated with 100% methanol over night. The rest 

steps of the pretreatment was the same as anti-BrdU staining (Ma et al., 2008), except 
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for skipping the proteinase K digestion. After pretreatment, the embryos were 

incubated first in blocking buffer at 4°C overnight or at room temperature for 4-6 h 

and then in primary antibody diluted in staining buffer at 4°C overnight. After 

incubation, the embryos were rinsed with PTWD for 3 times (10 min each time), 

followed by another round of blocking, secondary antibody incubation, and rinsing. 

The staining for detecting BrdU incorporation was done as previously described (Ma 

et al., 2008) with different antibodies: mouse anti-BrdU with Alexa Fluor 546 

conjugate and goat GFP antibody. DAPI (Invitrogen, 50 pg/mL) was used for 

counter-staining the nuclei in the embryos. Stained embryos were stored in glycerol 

(50% in 1X PBS) at 4°C before viewing. If needed, the embryos were mounted onto 

slides with Aqua Poly/Mount (Polysciences). 

4.3.5 Microscopy and image analysis 

The antibody staining results of embryos/larvae were visualized using an 

AxiovertNLO confocal microscope (Zeiss) with Carl Zeiss AIM software (Zeiss). 

The in situ hybridization results were captured under the Stemi SV 11 microscope 

(Zeiss) with Openlab software (Improvision). The imaging in the living larvae was 

done using an epitflurescence microscope Axiovert200M (Zeiss).  

4.3.6 Cell culture and chemical administration 

The zebrafish cell line Pac2 were maintained in as previously described (Lin et 

al., 1994). Before treated with S3I-201, Pac2 cells were plated in culture dishes 

coated with poly-L-lysine (Sigma) and cultured overnight to reach approximately 

40% confluence. The cells were treated with S3I-201 (5 µL stock/10 mL media, final 
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concentration = 50 µM) or DMSO (5 µL/10 mL media) for 2 h at 32ºC before they 

were collected for total RNA extraction. 

4.3.7 RNA extraction and qRT-PCR 

Total RNA was extracted from embryos and cultured cells as described in 

Section 3.3.1 with additional cleanup steps using RNeasy Minelute Cleanup kit 

(Qiagene) according to the manufacturer’s instructions. qRT-PCRs with the extracted 

RNA were performed as described in Section 3.3.5. 

4.3.8 Statistical analysis 

Student's t-test was used to compare data from experimental groups and control 

groups. The calculations were done using Excel software (Microsoft). 

4.4 Results 

4.4.1 Stat3 and socs3a expression in the lateral line neuromasts of zebrafish larvae 

According to a previous publication, stat3 expression has been detected in the 

lateral line neuromasts by in situ hybridization (Thisse & Thisse, 2004). At 5 dpf, 

stat3 expresses in a “donut” pattern in the neuromast, reminiscent of the localization 

of the supporting cells (Thisse & Thisse, 2004). My in situ hybridization results also 

showed the expression of socs3a in the neuromasts in 5-dpf larvae (Figure 4.1). 

Socs3a seemed only expressed in a subgroup of hair cells and/or supporting cells 

rather than unanimously in all cells in the neuromasts (Figure 4.1, close-up). 
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Figure 4.1. Socs3a expresses in the lateral line neuromasts in zebrafish larvae. 

Socs3a expression was detected in anterior and posterior lateral line neuromasts in 5-

dpf larvae by in situ hybridization (a close-up of one neuromast in bottom right 

corner). D: dorsal, A: anterior, dpf: days post fertilization. 

4.4.2 The self-restrictive regulation between stat3 and socs3a in zebrafish embryos 

Both stat3 (Mid-Blastula Transition (Oates et al., 1999)) and socs3a (20 hpf) 

express very early during zebrafish embryo development, so we used morpholino 

(MO) injection to knock down the expression of stat3 or socs3a during the early 

development of zebrafish embryos to determine if reduced expression in one of the 

two genes has an effect on the other. We found a significant decrease in stat3 and 

socs3a mRNAs in stat3 morphants, while a significant increase in stat3 and socs3a 

mRNAs in socs3a morphants (Table 4.2) consistent with the negative feedback loop 

experimentally determined in other systems.  
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4.4.3 Disruption of stat3/socs3a signaling during zebrafish development 

The genes/pathways involved in hair cell production during development often 

overlap with those used in hair cell regeneration (Cafaro et al., 2007; Ma et al., 2008; 

Millimaki et al., 2007; Stone & Rubel, 1999; Woods et al., 2004), so studying the 

function of stat3/socs3 signaling pathway in inner ear/neuromast development will 

not only reveal its function, if exists, in hair cell production during development, but 

also indirectly confirm its functions in hair cell regeneration. When we reduced either 

stat3 or socs3a expression with MOs, we observed deficits in lateral line neuromast 

development: the morphants exhibited fewer neuromasts and smaller numbers of hair 

cells per neuromast (Figure 4.2A; p < 0.01 in both cases). In order to examine the role 

of stat3/socs3 signaling in hair cell differentiation, we measured the mRNA level of 

atonal homolog 1a (atoh1a) in stat3 and socs3a morphants. Atoh1a is the zebrafish 

homolog of atoh1, which is an essential gene required for hair cell fate commitment 

(Bermingham et al., 1999; Millimaki et al., 2007; Woods et al., 2004). Both 

knocking-down of stat3 and over-expression of socs3a resulted in a reduction in 

atoh1a mRNA level (Table 4.2). In contrast, a strong increase in atoh1a mRNA level 

was observed in socs3a morphants where stat3 was presumably hyper-activated 

(Table 4.2). In addition, the cross-talk between stat3/socs3 and atoh1 was further 

confirmed by in situ hybridization of the socs3a morphants (Figure 4.2B).  
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Table 4.2. Summary of qRT-PCR results in morpholino- and mRNA-injected 
embryos 

 
Target gene 

Atoh1a Stat3 Socs3a 

Socs3a MO (36 hpf a) 1.35 (9.91e-3)b 1.76 (0.0284) 8.37 (0.0324) 

Socs3a mRNA (12 hpf) 0.615 (2.70e-3) 0.720 (0.0235)c - 

Stat3 MO (32 hpf) 0.547 (0.0105) 0.294 (1.77e-4) 0.600 (0.041) 

a. hpf: hour post fertilization 
b. Fold change (p value) 
c. Data collected from 6-hpf embryos 

A 

B 
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Figure 4.2. Socs3a and stat3 knock-downs disrupted hair cell production in 

lateral line neuromasts as well as the expression of atoh1a during zebrafish 

development. A) Both stat3 and socs3a morphants possessed fewer posterior lateral 

line neuromasts (left, n = 10 in all groups, one-tail t-test, *p < 0.01) with a smaller 

number of hair cells per neuromast (right, one-tail t-test, *p < 0.01) compared to 

control larvae at 2.5 dpf (days post fertilization). B) In addition, in socs3a morphants, 

an expansion of atoh1a expression was detected by in situ hybridization in both the 

brain and the lateral line. MO: morpholino, D: dorsal, A: anterior. 

In addition to the lateral line neuromasts, stat3 was also found expressed in the 

anterior region of the otic vesicle by in situ hybridization from around 24 hpf (Oates 

et al., 1999), while no socs3a expression was detected in the otic area by in situ 

hybridization in this study (24 hpf to 5 dpf). Correspondingly, stat3-morphants often 

had otic vesicles missing the anterior otolith (Figure 4.3A-H), while socs3a 

morphants showed no gross defect in the otic vesicles. The missing otolith either 

never appeared (in most cases up to 3 dpf), or occasionally appeared later in a 

reduced size. Using the hair cell marker, myosin VI, we found that the morphants 

showed a significant decrease in the number of hair cells in the anterior macula but 

not in the posterior macula at 32 hpf (Figure 4.3I and J). 
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Figure 4.3. Stat3 knock-down resulted in abnormal development of the otic 

vesicles in zebrafish embryos. A)-H) Stat3 morphants showed deficiencies in otic 

vesicle development, typically completely missing the anterior otolith but leaving the 

posterior otolith spared. Arrows (A): anterior otolith; arrow heads (P): posterior 

otolith. Left scale bar = 500 µm; right scale bar = 100 µm. I) Accordingly, anti-

myosin VI antibody staining (red) showed a reduction in the number of hair cells in 

the anterior macula (brace) but not in the posterior macula (bracket) at 32 hpf.  GFP 

(green) labeling the outline of cells in otic vesicle in Tg(cldnb:GFP) embryos. Scale 

bar = 20 µm. J) The reduction in hair cell number is statistically significant (n = 6 

(morphants) and 4 (control), one-tail t-test, *p < 0.01). MO: morpholino, D: dorsal, 

A: anterior, hpf: hour post fertilization. 

4.4.4 pS-stat3 activity in developing neuromasts 

Phosphorylation of S727 regulates human STAT3 activity (Decker & Kovarik, 

2000). Because the corresponding amino acid (S751) and the flanking amino acid 

sequences are highly conserved in zebrafish stat3 compared to human, we first 

tracked the stat3 with the phosphorylated serine residue (pS-stat3) in the developing 

neuromasts using an antibody that recognizes phosphorylated S727 in human STAT3 

(STAT3pS727). In young neuromasts (3 dpf), we found that the majority of cells in the 

neuromasts showed homogenous STAT3pS727 labeling in their nuclei but not in their 

cytoplasm (Figure 4.4A, upper panel). Double-labeling with scm1:GFP demonstrates 

that those cells are supporting cells and differentiating hair cells (Figure 4.4A, upper 

panel). In more mature hair cells, an intense but spotty labeling of STAT3pS727 
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antibody was found in the cytoplasm, while nuclear labeling was much weaker 

compared to the cytoplasmic labeling (Figure 4.4A, close-ups in upper panel).  

During the maturation of neuromasts, the overall number of cells with nuclear 

STAT3pS727 antibody labeling decreased (Figure 4.4A, lower panel). In neuromasts in 

5-dpf larvae, the STAT3pS727 antibody labeling in the mature hair cells (Figure 4.4A, 

lower panel) resembled those in the young neuromasts (3 dpf; Figure 4.4A, upper 

panel) with strong cytoplasmic labeling and weak nuclear labeling. However, 

STAT3pS727 antibody labeling was no longer detectable in most of the non-sensory 

cells in the neuromast except for a small group of cells that were located several cell-

layers away from the hair cells (Figure 4.4A, lower panel). Most of the labeled nuclei 

possessed an elongated oval shape (Figure 4.4A, arrowheads in lower panel). The 

immunohistological staining in transgenic ET20 larvae shows that most of those cells 

with nuclear labeling of STAT3pS727 antibody are mantle cells (Figure 4.4A, 

arrowheads in lower panel).  

4.4.5 Nuclear import of pS-stat3 after CuSO4-induced hair cell death in lateral line 

neuromasts 

We induced hair cell death in the lateral line neuromasts with CuSO4, a protocol 

ensuring complete hair cell elimination within 2 h in 5-dpf larvae (Hernández et al., 

2007) followed by regeneration to control level within 72 h (Behra et al., 2009). The 

experiment was done in Tg(scm1:GFP) larvae where the supporting cells in the 

neuromasts are labeled with GFP (Behra et al., 2009). We found a significant increase 

(p < 0.01) in the number of STAT3pS727-positive nuclei in the neuromasts at 12 hours 
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post CuSO4 treatment (hpt) in the CuSO4-treated larvae relative to control (Figure 

4.4B and C. Double-labeling with GFP in Tg(scm1:GFP) (Behra et al., 2009) 

demonstrates that cells with nuclear staining of STAT3pS727 are mainly the supporting 

cells (Figure 4.4B). 
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Figure 4.4.  The phosphorylation and nuclear import of stat3 protein were 

detected after CuSO4-induced hair cell death in lateral line neuromasts and 

B

C 

A
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similar activation of stat3 was also observed during neuromast development. A) 

In 3-dpf (days post fertilization) larvae, a large number of the nuclei (blue) were 

homogenously labeled with STAT3pS727 antibody (red), some of which were 

supporting cells with scm1:GFP-labeling (green) (upper panel). A small number of 

maturing hair cells showed decreased and spotty STAT3pS727-labeling in the nuclei 

but elevated STAT3pS727-labeling in the cytoplasm (close-ups in upper panel). 

Nuclear STAT3pS727-labeling decreased dramatically in more mature neuromasts in 5-

dpf larvae, except for a small group of cells in labeled with GFP in ET20 transgenic 

larvae (lower panel, arrowheads). Scale bar (close-ups) = 5 µm; scale bar (panel) = 20 

µm. B) Co-staining of anti-STAT3pS727 (red) with DAPI (blue) in Tg(scm1:GFP) 

larvae confirmed the increased anti-STAT3pS727 labeling locates mainly in the nuclei 

of supporting cells (GFP-positive) (green) at 12 hours post copper treatment 

compared to untreated controls (scale bar = 20 µm). C) The increase in nuclear 

localized phospho-stat3 was statistically significant (n = 10 (treated) and 9 (control), 

one-tail t-test, *p < 0.01). S727 in human STAT3 corresponds to S751 in zebrafish 

stat3 by sequence alignment. 

4.4.6 S3I-201 treatment promoted hair cell regeneration in zebrafish lateral line 

neuromasts 

To further clarify the function of stat3, we compared the lateral line hair cell 

regeneration processes with and without the presence of a putative stat3 inhibitor, 

S3I-201. S3I-201 is a cell-permeable chemical that binds to the SH2-domain of 

mammalian stat3 protein and reportedly blocks the dimerization of phosphorylated 

(activated) stat3 molecules (Siddiquee et al., 2007). After exposing Tg(pou4f3:GFP) 
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larvae (Xiao et al., 2005) to CuSO4, we quantified the regenerating hair cells and 

performed a bromodeoxyuridine (BrdU) incorporation assay. The S3I-201-treated 

larvae had more hair cells (GFP-positive) per neuromast at 48 hpt (p < 0.01), but not 

at 24 or 72 hpt (Figure 4.5A). Accordingly, the S3I-201-treated larvae showed a 

significant increase in BrdU incorporation in the neuromasts compared to DMSO-

treated larvae (control) at 24 hpt, but not at 48 or 72 hpt (Figure 4.5A), which is 

consistent with an expected lag between supporting cell division and subsequent hair 

cell differentiation. In essence, the hair cells regenerated faster in the S3I-201 treated 

embryos than in controls. Similar results were observed when hair cell quantification 

was done by myosin VI antibody staining. S3I-201 did not have a significant impact 

on hair cell numbers in larvae that had not been treated with CuSO4.  

4.4.7 S3I-201 up-regulated of stat3/socs3 signaling in cultured zebrafish cells 

The effect of S3I-201 on cell division and regeneration in zebrafish embryos was 

the opposite of what was predicted for an inhibitor of stat3 activation. In order to 

confirm S3I-201’s inhibitory function, we compared the mRNA levels of four 

transcriptional targets of stat3 (stat3, socs3a, bcl6, and mmp9) in zebrafish Pac2 cells 

treated with or without S3I-201 using qRT-PCR. We detected a significant increase in 

the mRNA levels of all four genes after S3I-201 treatment for 2 h (Figure 4.5B), 

demonstrating that S3I-201 is in zebrafish, an activator of stat3 instead of the reported 

inhibitor. 
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Figure 4.5. S3I-201 promoted lateral line hair cell regeneration by up-regulating 

stat3/socs3 signaling. A) After lateral line hair cell loss induced by CuSO4 treatment, 

larvae incubated with S3I-201 had more hair cells (GFP-positive cells in 

Tg(pou4f3:GFP)) per neuromast (NM) at 48 h post CuSO4 treatment (hpt) compared 

A 

* 

* 

B 
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to the control larvae incubated with DMSO (n =  12 (S3I-201-treated) and 9 (control), 

one-tail t-test, *p < 0.01), but not at 24 or 72 hpt (line graph). The BrdU incorporation 

assay showed a significantly higher number of BrdU-positive cells per neuromast in 

larvae incubated with S3I-201 at 24 hpt (n = 16 (S3I-201-treated) and 10 (control), 

one-tail t-test, *p < 0.01), but not at later time-points (bar graph). B) qRT-PCR results 

demonstrate that a 2 h-incubation of S3I-201 significantly up-regulated the mRNA 

levels of both stat3 and its downstream targets, including socs3a, bcl6, mmp2, and 

mmp9 (n = 3, one-tail t-test *p < 0.05). bactin1 was used as the reference gene. 

4.5 Discussion 

4.5.1 A negative feedback loop exists between zebrafish stat3 and socs3a  

In mammals, stat3 activates the transcription of socs3, the protein of which 

inhibits stat3 activity (Gao & Ward, 2007). The qRT-PCR results from RNA 

extracted from MO-injected zebrafish embryos (Table 4.2) suggest that the negative 

feedback in stat3/socs3 pathway broadly studied in mammals is also conserved in 

zebrafish where stat3 initiates the transcription of both stat3 and socs3a while socs3a 

protein antagonizes the activation of stat3 signaling. 

4.5.2 Stat3/socs3 signaling is required for normal hair cell/supporting cell production 

during zebrafish development 

Down-regulation of stat3 reduced the number of hair cells in both the lateral line 

neuromasts (Figure 4.2) and the anterior macula of otic vesicle (Figure 4.3I and J), 

which suggests that stat3 is important for normal hair cell production during 

development. Accordingly, the sub-cellular staining pattern of STAT3pS727 antibody 
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changed dramatically in the differentiating hair cells/supporting cells during the 

neuromast development (Figure 4.4A). However, when an up-regulation of stat3 

expression was achieved by knocking-down socs3a expression (Table 4.2), there were 

still fewer hair cells produced in the neuromasts (Figure 4.2A), which suggests that 

the over-activation of stat3 in socs3a morphants impaired hair cell production. In 

addition, during hair cell/supporting cell differentiation in the lateral line neuromasts, 

nuclear labeling of STAT3pS727 antibody was greatly reduced in differentiating hair 

cells/supporting cells (Figure 4.4A). The results from both the socs3a knockdown and 

the antibody staining indicate that a down-regulation in stat3 signaling is required for 

hair cell (and maybe supporting cell) differentiation. It seems that the stat3 signaling 

is required for establishing the group of prosensory cells in the neuromast. The cells 

with nuclear pS-stat3 activity in the young neuromasts may represent a group of cells 

temporarily maintaining self-renewal ability and actively dividing to generate enough 

prosensory cells for fully formed neuromasts.  However, as the neuromast matures, 

stat3 signaling needs to be repressed to facilitate cell cycle exit and further cell 

differentiation. The normal inner ear hair cell production in socs3a morphants may be 

due to the absence of socs3a expression in the otic vesicle (Figure 4.1). 

4.5.3 Stat3/socs3 signaling cross-talks with atoh1 in hair cell/supporting cell 

production during development  

Atoh1a is the zebrafish homolog of atoh1, which is an essential gene required for 

hair cell fate commitment (Bermingham et al., 1999; Millimaki et al., 2007; Woods et 

al., 2004). Animals with atoh1 knockdown/knockout fail to produce hair cells during 

development while ectopic expression of atoh1 results in over-production of hair cells 
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(Bermingham et al., 1999; Millimaki et al., 2007; Woods et al., 2004). Zebrafish 

atoh1a also has functions similar to its mammalian homolog (Millimaki et al., 2007). 

Atoh1a expression was down-regulated in stat3 morphants and up-regulated in socs3a 

morphants (Table 4.2), suggesting a direct or indirect activation of atoh1a by stat3 

signaling. Surprisingly, a decrease in the number of lateral line hair cells was found in 

socs3a morphants where the increase in atoh1a expression in the morphants was 

confirmed both by qRT-PCR (Table 4.2) and by in situ hybridization (Figure 4.2B). It 

has been shown that low level of atoh1 expression is required for the commitment of 

both hair cells and supporting cells in the prosensory area before it is up-regulated in 

hair cells and down-regulated in supporting cells in developing mouse cochlea 

(Woods et al., 2004). The atoh1 expression is later down-regulated as the hair cell 

matures (Lanford et al., 1999), the mechanism for which is unknown. Together with 

the discussion in Section 4.5.2, we propose that in stat3 morphants, an early and 

overall down-regulation of atoh1a expression leads to a reduction in the commitment 

of prosensory cells and thus fewer hair cells while in socs3a morphants, atoh1a 

expression is expanded as a result of stat3 hyper-activation, but prolonged stat3 

actually activity hampers the terminal differentiation of hair cells and supporting 

cells. However, such cross-talk between stat3/socs3 and atoh1 has not been reported. 

One possible mechanism to mediate this cross-talk is through Hairy and Enhancer of 

Split proteins (HES), important effectors of the Delta/Notch signaling pathway which 

plays an essential role in the hair cell/supporting cell fate commitment in both 

development and regeneration (Reviewed in Section 2.2.4). For example, it inhibits 

the transcription of atoh1 in differentiating supporting cells during the development 
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of the mouse cochlea (Woods et al., 2004). In addition, HES1 also promotes both 

jak2-mediated (Kamakura et al., 2004) and src-mediated (Lee et al., 2009) activation 

of stat3 in mammalian cell lines. Because Hes1 has been detected as associating with 

the jak2/stat3 complex (Kamakura et al., 2004), it is possible that over-expression of 

stat3 exhausts the cytoplasmic HES and thus alleviates the inhibition of HES on 

atoh1a transcription in socs3 morphants, resulting in prolonged (and maybe ectopic) 

atoh1a expression and disrupted hair cell/supporting cell maturation. In addition, stat3 

is also related to the expression of Inhibitors of DNA binding (Ids)  (Belletti et al., 

2002; Prisco, Peruzzi, Belletti, & Baserga, 2001) and SRY-box containing gene 2 

(sox2), both of which regulate atoh1 expression during cochlea development 

(Dabdoub et al., 2008; Jones et al., 2006).  

4.5.4 Nuclear-cytoplasmic shuttling of pS-stat3 in developing and regenerating 

neuromasts 

The different sub-cellular localization of pS-stat3 in differentiating hair cells and 

supporting cells/progenitor cells in young neuromasts (in 3-dpf larvae, Figure 4.4A) 

suggests nuclear pS-stat3 activity is involved in cell fate commitment and/or 

supporting cell differentiation while reduced pS-stat3 signaling is preferred in 

differentiating/maturing hair cells. Immuno-staining of STAT3pS727 in the neuromasts 

in 5-dpf larvae further confirms the decrease in nuclear pS-stat3 activity during hair 

cell maturation (Figure 4.4A), consistent with our hypothesis that a down-regulation 

of stat3 signaling is required for terminal hair cell differentiation (See Section 4.5.2 

and 4.5.3). The changes in the sub-cellular localization of pS-stat3 during the 

maturation of hair cells and supporting cells suggest that transcriptional activity of 
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stat3 is needed during the cell fate commitment and maybe the early differentiation of 

hair cell/supporting cell progenitors, but needs to be tuned down for the late stage of 

hair cell/supporting cell differentiation and maturation. Another possible function of 

stat3 signaling in immature neuromasts is to promote cell division and generate 

enough prosensory cells. In addition, although the non-sensory cells were scm1:GFP-

positive in both young and more matured neuromasts, those in the more matured 

neuromasts seem farther down the differentiation path because of the STAT3pS727 

staining was absent from their nuclei.  

The pattern of STAT3pS727-staining signals in hair cells was a surprise because as 

the hair cell differentiation proceeded, the staining not only weakened in the nuclei, 

but also greatly intensified in the cytoplasm (Figure 4.4A). Given the intensity of the 

staining, we believe that there is pS-stat3 retained in the cytoplasm, though it remains 

possible that the cytoplasmic staining is due to cross-reaction and/or some kind of 

artifact. Mitochondria have been shown to interact with stat3 as a regulator of 

metabolism (Gough et al., 2009; Wegrzyn et al., 2009). Another cytoplasmic structure 

that has been found associated with stat3 is the microtubules of the cytoskeleton (Ng 

et al., 2010; Ng et al., 2006; Verma et al., 2009). Here we used STAT3pS727 antibody 

to track the serine-phosphorylated stat3 in the neuromasts. Immunohistochemical 

staining with neither the pan-stat3 antibodies nor the STAT3pY705 antibodies (for 

unknown reasons) yielded convincing results. As a result, the behavior of 

unphosphorylated stat3 protein and tyrosine-phosphorylated stat3 protein in 

neuromasts is still unknown. 
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It is known that hair cell production during development and regeneration, to 

some extent, share similar genetic programs (Cafaro et al., 2007; Daudet et al., 2009; 

Ma et al., 2008; Stone & Rubel, 1999). The examination of stat3 activity in lateral 

line neuromasts during development and regeneration further confirms the similarity 

shared between the two processes. When hair cell death was triggered in 5-dpf larvae 

the stat3 protein was activated and imported into the nuclei of the supporting cells 

again (Figure 4.4B), recapitulating the generalized stat3 activation during neuromast 

development (Figure 4.4A).  

4.5.5 Stat3 signaling is involved in hair cell regeneration in the lateral line neuromasts 

of zebrafish larvae 

Nuclear import of pS-stat3 happened subsequent to CuSO4-induced hair cell loss 

in lateral line neuromasts at 12 hpt (Figure 4.4B), the earliest time-point checked after 

CuSO4 treatment. The BrdU incorporation peaked at 15 h subsequent to neomycin-

induced lateral line hair cell elimination in 5-dpf old zebrafish (Ma et al., 2008). The 

regeneration of hair cells in CuSO4-treated larvae is likely to be delayed compared to 

neomycin-treated larvae because the CuSO4 treatment does result in additional 

damage to nonsensory cells in the neuromasts (Olivari, Hernández, & Allende, 2008). 

Nuclear import of pS-stat3 preceded the peak of BrdU incorporation, suggesting that 

stat3 signaling may promote cell-cycle progress in hair cell regeneration, as seen in 

other regenerative processes (Kassen et al., 2009; Li et al., 2002). A recent study 

further supports this idea as it reported leukemia inhibitory factor (LIF) promoted cell 

division in a cochlea-derived cell line, HEI-OC1, through the stat3/jak2 signaling 

pathway (Chen et al., 2010). In addition, a very small number of early-emerging hair 
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cells are not generated by cell division during lateral line hair cell regeneration (Ma et 

al., 2008). Those hair cells may originate from the differentiation/maturation of 

supporting cells or young hair cells that have survived the ototoxic treatment. Since 

pS-stat3 activity was also detected in the nuclei of differentiating hair cells/supporting 

cells during development (Figure 4.4A), some of the cells with STAT3pS727-positive 

nuclei might be differentiating hair cells or transdifferentiating/differentiating 

supporting cells. The activation and the nuclear import of pS-stat3 in the supporting 

cells indicate the involvement of stat3 signaling during hair cell regeneration. 

4.5.6 S3I-201 treatment positively regulated stat3 signaling and promoted hair cell 

regeneration in lateral line neuromasts of zebrafish larvae 

S3I-201 treatment after CuSO4-induced hair cell death promoted hair cell 

regeneration in zebrafish lateral line by accelerating cell division (Figure 4.5A). 

Interestingly, the S3I-201 treatment only accelerated hair cell regeneration without 

producing supernumerary hair cells compared to the control larvae by 72 hpt (Figure 

4.5A). A possible explanation is that pharmacological hyper-activation of stat3 was 

transient because of inhibition from the subsequent elevated level of socs3a through 

an intact stat3/socs3a self-restrictive loop.  

S3I-201 was described as an antagonizer of stat3 activity by blocking the 

dimerization of phosphorylated (activated) stat3 proteins in mammalian cell lines 

(Siddiquee et al., 2007). However, S3I-201 treatment enhanced the mRNA level of 

four stat3 target genes in Pac2 cells (Figure 4.5B), demonstrating S3I-201 is an 

agonist of stat3 activity at least in zebrafish cells. First of all, the discrepancy in S3I-

201 function between mammals and zebrafish may be the result of an organism-
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specific response to the chemical. In addition, stat3 protein in zebrafish neuromasts is 

activated at least partially by serine phosphorylation (Figure 4.4). It is unclear 

whether S3I-201 has certain binding preference between pS-stat3 and pY-stat3.  

However, Lin et al. (2009) reported a more potent effect of S3I-201 on inhibiting cell 

proliferation in hepatocellular carcinoma cells with disrupted TGF-β signaling that 

resulted in a higher level of tyrosine phosphorylation but a lower level of serine 

phosphorylation of stat3. Another small-molecule inhibitor of stat3, stattic, targets the 

same binding region in the stat3 protein (SH2 domain) as S3I-201 and shows 

temperature-dependent inhibition efficiency: the efficiency decreases as the 

temperature gets lower (Schust, Sperl, Hollis, Mayer, & Berg, 2006). It is possible 

that S3I-201 acts differently in our experiment because the zebrafish and Pac2 cells 

were raised at temperatures (28ºC and 32ºC respectively) much lower than that in the 

published studies in cell lines (37ºC). Last but not least, previous studies on S3I-201 

did not examine the effect of the chemical until after 24 h of treatment (Siddiquee et 

al., 2007) while we checked the mRNA level of the target genes of stat3 after 2 h of 

treatment in Pac2 cells. It is possible that prolonged-treatment of S3I-201 hyper-

activated the negative feedback of socs3 and resulted in a delayed decrease in stat3 

signaling. 

Therefore stat3 signaling is directly involved in initiating cell division in the 

supporting cell population, in accordance with our observation of stat3 import into the 

nuclei of the supporting cells at a very early time-point (12 hpt) after the induction of 

hair cell death (Figure 4.4B), consistent with an activation of stat3 activity instead of 

inhibition. In addition, it is very likely that stat3 activity potentiated by S3I-201 



 

 118 
 

promoted hair cell regeneration by regulating cell division based on the dramatic 

changes of pS-stat3 activity during neuromast development (Figure 4.4A) as well as 

the disrupted hair cell production (Figure 4.2A and 4.3) and atoh1a expression (Table 

4.2 and Figure 4.2B) in stat3 and socs3a morphants. When both in vivo and in vitro 

results are taken into account, S3I-201 appeared to activate zebrafish stat3 signaling 

which accelerated hair cell regeneration. 

4.5.7 Stat3 activity vs. the potential stem cell population in mature neuromasts  

The nonsensory cells (usually addressed as “supporting cells” in general) in the 

neuromasts have been proposed as potential stem cells because of their ability to give 

rise to new sensory and nonsensory cells (Behra et al., 2009; Hernández et al., 2007; 

Ma et al., 2008). However, the nonsensory cells in the neuromasts are not a 

homogenous group of cells. Mantle cells are a subgroup of the nonsensory cells 

defined by their location: in the outer cell layers of a neuromasts and with no direct 

contact with hair cells (Hama & Yamada, 1977; Jones & Corwin, 1993). They are 

also characterized by the crescent-shaped cell body, elongated nucleus, and short, 

sparse microvilli at the apical surface (Hama & Yamada, 1977). In mature 

neuromasts, mantle cells are the only dividing cells in the neuromasts (Williams & 

Holder, 2000). When older zebrafish larvae (10 dpf) are given a pulse-treatment of 

BrdU and sacrificed at different time-points after the treatment, incorporation of 

BrdU is only detected in mantle cells at the earliest time-point examined followed by 

detection of BrdU in supporting cells in later time points (Williams & Holder, 2000). 

In addition, mantle cells divide and give rise to whole neuromasts when the 

neuromasts in the fin/tail are completely eliminated by amputation in zebrafish 
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(Dufourcq et al., 2006) and salamanders (Jones & Corwin, 1993).  Taking all the 

evidence together, mantle cells act like a pool of multipotent stem cells in the 

neuromasts by going through cell division to renew themselves as well as give rise to 

new hair cells/supporting cells. 

In the transgenic zebrafish line ET20, the outermost nonsensory cells in the 

neuromasts (possibly a subgroup of the mantle cells) are labeled with GFP (Choo et 

al., 2006). In our data, we showed that nuclear staining of STAT3pS727 was only 

maintained in the GFP-positive cells in ET20 fish in more matured neuromasts 

(Figure 4.4A). Hence it is reasonable to propose pS-stat3 as a stem cell marker in 

lateral line neuromasts. As supporting evidence to the hypothesis, stat3 is known as 

required for the maintenance of pluripotency in mouse embryonic stem cells (Raz, 

Lee, Cannizzaro, d’Eustachio, & Levy, 1999). However, the effect of stat3 in the 

oligopotent neural progenitor cells (NPCs) seems controversial. On one hand, stat3 

was reported as promoting the astrogliogenetic differentiation of NPCs (Cao, Hata, 

Zhu, Nakashiro, & Sakanaka, 2010; Nakashima et al., 1999; Taga & Fukuda, 2005). 

On the other hand, stat3 was found promoting the proliferation and inhibiting 

differentiation of NPCs (Wada et al., 2006). The difference may be due to the 

different stages of NPCs examined. For example, stat3-activating ligands induce 

astrocytic differentiation in late-staged (gliogenic) NPCs but fail to do so in early-

staged (expansion and neurogenic) NPCs during the development of mouse forebrain 

(Hirabayashi & Gotoh, 2005). The suggestion is that stat3 acts as a stage-dependent, 

multifunctional regulator in neurogenesis. 
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An alternative function of the pS-stat3-positive mantle cells in mature and intact 

neuromasts may be a “stem cell niche.” They may regulate the adjacent stem cells 

through a non-autonomous mechanism similar to the role of stat92E in the Escort 

Stem Cells in the Drosophila ovary, which regulate germline stem cell division in a 

non-autonomous fashion (Decotto & Spradling, 2005). These pS-stat3-positive 

mantle cells would thus represent part of the niche environment necessary to promote 

normal cell turnover as well as tissue regeneration. 

4.5.8 Development vs. regeneration: a working model of stat3 function in zebrafish 

lateral line neuromasts 

In immature neuromasts, stat3 activity was detected in most of the cells (Figure 

4.4A), suggesting the less differentiated status of those cells. Although not tested, it is 

possible that those cells are more stem cell-like and still capable of active division 

before they are further differentiated. During neuromast maturation, down-regulation 

in stat3 activity in the nuclei accompanies (and is probably required by) the 

differentiation of hair cells and supporting cells. Reduced stat3 activity in the nuclei 

of differentiated hair cells/supporting cells may partially account for their inability to 

move on with the cell cycle. In contrast, some mantle cells maintain the stat3 activity 

in their nuclei, either acting as or helping maintaining the multi-potent stem cells in 

the neuromasts. 

While pS-stat3 was nearly absent from supporting cells in intact mature 

neuromasts (Figure 4.4A), it was detected again shortly after CuSO4-induced hair cell 

death (Figure 4.4B). In lateral line hair cell regeneration in zebrafish larvae, the 

majority of new hair cells come from the cell division in supporting cells (and maybe 
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mantle cells as well) division (Ma et al., 2008). Based on the fact that supporting cell 

division is rare in intact zebrafish neuromasts (Williams & Holder, 2000), we propose 

supporting cells as uni-potent cells which hold the ability to terminally differentiate 

only into hair cells. Lateral inhibition possibly restricts the self-renewal ability of 

supporting cells and holds them at the post-mitotic stage. As a result, supporting cells 

have to rely on the division of the multi-potent stem cells, likely the mantle cells, for 

replenishment. Different from supporting cells, mantle cells divide on a regular basis, 

partially due to the autonomous or non-autonomous mitogenic activity of the stat3 

signaling. When small numbers of the hair cells die as part of the regular turnover, the 

lateral inhibition on their surrounding supporting cells is partially alleviated, which 

enables them to completely differentiate into hair cells. During the differentiation, 

stat3 protein may be activated again, but is eventually restricted to the cytoplasm. 

When acute and disastrous hair cell death takes place (e.g. toxic chemical exposure), 

the supporting cells are totally free of lateral inhibition, resulting in the translocation 

of activated stat3 protein into the nuclei and subsequent cell cycle progression. When 

new hair cells differentiate, the lateral inhibition is re-established to turn off the stat3 

signaling and hold the supporting cells at the post-mitotic stage again. During 

regeneration, mantle cells continue to divide (or to promote cell division), likely at an 

elevated rate.  

It may seem reasonable to consider supporting cells and mantle cells as 

equivalent cells that behave differently in different contexts: supporting cells are 

mantle cells temporarily turned quiescent by hair cells or mantle cells are supporting 

cells free of lateral inhibition as a result of no direct contact with hair cells. However, 
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because the two groups of cells possess very distinct morphological and molecular 

features, this simple model seems unlikely and they should probably be considered as 

two different cell types, mantle cells as multi-potent stem cells and parent cells of 

supporting cells which are uni-potent cells. 

4.5.9 Mammals vs. zebrafish: stat3 signaling in hair cell regeneration 

It was also reported that stat3 showed a temporal expression pattern similar to 

gata2 and C/EBP during the in vitro differentiation of conditional cell lines derived 

from the mouse otocyst (Holley, Kneebone, & Milo, 2007). Very little is known 

about stat3 in the inner ear of mammals other than that the protein is detected only in 

the nuclei of outer hair cells but not in any supporting cells in embryonic or neonatal 

mice (Hertzano et al., 2004). However, stat3 remains active in a subgroup of 

nonsensory cells (GFP-positive cells in ET20 fish line) of mature neuromasts (Figure 

4.4A), which may serve as a putative group of stem cells or “stem cell niche” (See 

Section 4.5.7). The numbers of stem cell-like cells decreased rapidly in the cochlea of 

mice after birth (Oshima et al., 2006) while those cells are still available in vestibular 

end organs of adult mice (Li, Liu, & Heller, 2003). The rapid decrease of stem cell-

like cells in the cochlea may be due to the lack of a “stem cell niche” to maintain 

those cells. It is unclear that if stat3 contributes to the maintenance of the stem cell-

like cells in the vestibular end organs.  

Stat3 in outer hair cells may play a protective role against oxidative stress as a 

previous microarray study did show basal-level expression of stat3 in newborn rat 

cochlea that could be elevated by stress in explant cultures (Gross et al., 2008). 

However, if stat3 signaling remains absent in supporting cells after hair cell death in 
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mouse cochlea, it is not likely to be involved in hair cell regeneration. Therefore, the 

difference in hair cell regeneration ability between mice and zebrafish can be partially 

attributed to the mitogenic and differentiation roles of stat3 signaling. From a 

therapeutic standpoint, inducing stat3 activity in supporting cells may trigger cell 

cycle progression and hair cell regeneration in the mammalian ears. 

4.5.10 The stat3/socs3 pathway may serve as a common initiator in a variety of 

regenerative processes 

Previous publications have revealed the critical role of stat3 and socs3 in the 

regenerative processes of various tissues in both mammals and zebrafish (See Section 

4.2.3). Taken together, all these data strengthen our hypothesis that stat3/socs3 is a 

central activating mechanism to activate adult stem cells in many if not all forms of 

regeneration.  

The self-restricted signaling loop of stat3/socs3 makes it of special interest as a 

therapeutic target for regeneration. Under typical circumstances, an immediate and 

brief up-regulation of stat3 expression in response to tissue damage seems to be 

necessary to initiate regeneration. The tight temporal control of activation is achieved 

by the negative feedback from socs3.  Prolonged stat3 signaling after injury can 

sometimes result in inflammation and disrupt regeneration. In addition, constitutive 

hyperactivation of stat3 is often observed in cancer cells where cell proliferation is 

out of control. Unregulated activation of stat3 would not be ideal in induced 

regenerative therapy. Pharmacologically up-regulating stat3 expression while 

allowing the normal socs3 feedback may help achieve the desirable regenerative 

effect of accelerating the wound healing response, but preventing over-production of 
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cells. Thus chemical activators of stat3 may represent a safely self-regulating therapy 

in a wide variety of injuries and therapies for tissue regeneration. 
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Chapter 5 Summary and Future Studies 

 

5.1 High-throughput gene expression profiling with Digital Gene Expression 

In this study, we used Digital Gene Expression (DGE/tag profiling) to generate 

in-depth gene expression profiles from inner ear tissue samples collected at different 

time-points during hair cell regeneration. The five expression profiles captured over 

300,000 unique tag sequences with an accumulative count of more than 15 million 

tags (Table 3.3). Such data depth allows the identification of low-abundance 

transcripts and provides great statistical power for comparison. The clustering and 

pathway analyses strongly suggest that the DGE profiling properly reflected the 

biological changes during hair cell regeneration (Figure 3.4). By profile comparison, 

more than 2,000 candidate genes were identified (Supplemental file 3) and some of 

them were confirmed with qRT-PCR (Figure 3.3A). In summary, the DGE technique 

provided large-scale and in-depth profiling results that gave me a comprehensive 

overview of the regenerative process at the molecular level as well as identifying 

candidate genes in a high-throughput manner. 

The DGE profiling experiments were carried out around the time when DGE was 

first introduced to the research community. Due to the lack of previous studies and 

the relatively high cost of the technique at that time, the application of DGE 

technique in this study has significant room for improvement. Starting with the 

experimental design, more biological and technical replicates should be included in 

future studies to improve the statistical power. Due to new amplification techniques 
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allowing for a decrease in the required minimum amount of starting materials, 

biological samples can be collected from conventional dissection as well as micro-

dissection or Fluorescence Activated Cell Sorting (FACS) to examine the profiles of a 

more homogenous group of cells, which will provide expression profiles with even 

finer spatial resolution and a higher signal-to-noise ratio. To get a finer temporal 

resolution, more time-points of tissue sampling (especially between the onset of the 

noise exposure and 24 hpt in this study) are needed.  

Some miRNA-encoding genes were identified as candidate genes in this study 

(See Section 3.4.10) as well as in other regenerative studies (Kren et al., 2009; 

Marquez et al., 2010; Yin et al., 2008). Since DGE is designed mainly for profiling 

protein-coding genes, other sequencing-based techniques designed for profiling small 

RNAs (and/or other non-coding RNAs) are needed to more accurately explore the 

function of small RNAs (and even non-coding RNAs) during hair cell regeneration. 

5.2 Stat3/socs3 pathway in hair cell regeneration 

The stat3/socs3 pathway was identified by comparing gene expression profiles 

collected at different time-points during hair cell regeneration. The expression level 

of both stat3 and socs3a were up-regulated at 0 hpe and returned to control levels by 

24 hpe (Supplemental file 3). Both genes were involved in hair cell production during 

development and regeneration (Figure 4.2A, 4.3, and 4.4). These functions may be 

partially fulfilled by regulating atoh1a (Figure 4.2B and Table 4.2). More 

interestingly, pharmacological hyperactivation of stat3 signaling accelerated hair cell 

regeneration by promoting cell division in the supporting cells (Figure 4.5A). 
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This study provided a preliminary functional study of the stat3/socs3 pathway in 

hair cell regeneration, leaving many interesting questions to be answered. First, the 

role of the stat3/socs3 pathway needs to be directly examined in the inner ear during 

hair cell regeneration instead of using the lateral line as a proxy. In addition, it is also 

important to characterize the activity of stat3 signaling in the mammalian inner ear 

under normal conditions as well as after hair cell death. Second, the upstream genes 

activating stat3 signaling after hair cell death and the downstream effectors of stat3 

are still unknown. Third, here only the activation of the stat3 protein by S727 (S751 

in zebrafish) phosphorylation was characterized. Since stat3 protein can also be 

activated by the phosphorylation of Y705 (Y708 in zebrafish), it would be interesting 

to know how tyrosine phosphorylation is regulated in hair cell regeneration. Fourth, 

because the nucleus-cytoplasm trafficking of stat3 protein is closely related to the 

functions of the stat3 signaling pathway, a closer examination of the nuclear import 

and export of stat3 protein in both regeneration and development is needed for further 

understanding of the regulation of the stat3/socs3 pathway. In addition, the function 

of cytoplasmic stat3 proteins in the hair cells also remains intriguing. Fifth, 

examination of the interaction between stat3/socs3 and atoh1, a crucial factor for hair 

cell fate commitment, will give us a better understanding of the functions of the 

stat3/socs3 pathway during hair cell production as well as the regulatory mechanisms 

of atoh1. Finally, it is known that the stat3/socs3 pathway is also involved in immune 

responses and cell protection in injured tissues (See Section 4.2). It would be 

interesting to see if stat3/socs3 pathway is involved in the immune responses induced 

by hair cell death, which may have further impact on hair cell regeneration. Because 
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stat3 is known to be expressed in the outer hair cells in mouse cochlea (Hertzano et 

al., 2004), it would be interesting to see if the stat3 protein can provide protection to 

those hair cells against ototoxicity.  

5.3 Zebrafish and hair cell regeneration 

5.3.1 Zebrafish as a model system for hair cell regeneration studies 

There are three main reasons for choosing zebrafish as a potential model system 

for hair cell regeneration studies. First, the conservation of the inner ear sensory 

epithelial structure through all vertebrates justifies the claim that our understanding of 

hair cell regeneration in nonmammalian vertebrates will potentially translate into 

strategies for inducing similar regeneration in the ears of mammals. Second, zebrafish 

studies are facilitated by the availability of well-annotated genome/transcriptome 

sequences, mutant/transgenic fish lines, and a series of cellular and molecular tools. 

Finally, the superficially located neuromasts in the lateral line offer a simple system 

for functional studies on genes of interest during regeneration (Behra et al., 2009; 

Harris et al., 2003; Hernández et al., 2007; Ma et al., 2008).  

This study further justifies the choice of zebrafish as a model system for hair cell 

regeneration studies. Large-scale candidate gene screening would offer a 

comprehensive overview of the regenerative process. Such screening would be more 

difficult in organisms without a well-annotated genome/transcriptome, e.g. chicken or 

frog. The functional studies of the stat3/socs3 pathway in the lateral line system 

provide an example of how efficient follow-up studies can be performed after the 
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initial, large-scale screening, which is lacking in the hair cell regeneration studies in 

chickens (Hawkins et al., 2003, 2007). 

In line with the regenerative studies, the lateral line neuromasts can also serve as 

a potential model system for studying somatic stem cells. It has been suggested that 

the supporting cells (or a subgroup of the supporting cells) in the inner ear serve as 

somatic stem cells (Parker & Cotanche, 2004). The supporting cells (or nonsensory 

neuromast cells) in the neuromasts are capable of self-renewal (Williams & Holder, 

2000) as well as hair cell progenitor production (Ma et al., 2008), which is 

characteristic of somatic stem cells. In addition, the dynamic activity of stat3 protein 

during development and regeneration found in this study further suggests a possible 

“stem cell/niche” pattern in the neuromasts (See Section 4.4.4, 4.4.5, and 4.5.7). A 

better understanding of the somatic stem cells maintenance and their reaction 

triggered by damage in the neuromasts will help us understand not only how hair cells 

are regenerated but also how other regenerative processes are regulated. 

5.3.2 The toolbox for future hair cell regeneration studies in zebrafish 

One of the future research directions is to further establish zebrafish as a model 

system for hair cell regeneration studies. In order to accomplish that, new 

experimental tools are needed to help examine the regeneration in zebrafish. In 

addition to the molecular/cellular tools used in this study, there are several others that 

could be incorporated for future studies.  

First, it will be helpful to incorporate different physical, chemical and biological 

tools in addition to acoustic over-exposure for inducing hair cell death. Those tools 

include laser ablation (Balak et al., 1990; Millimaki et al., 2010), ototoxic chemicals 
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(Harris et al., 2003; Hernández et al., 2007; Ou et al., 2007), and the nitroreductase 

(NTR) system (Pisharath et al., 2007). In addition to using these tools to efficiently 

eliminate hair cells/supporting cells, it will also be interesting to compare the effects 

of different ototoxic treatments on hair cell regeneration. 

Second, the superficially located neuromasts provide an excellent system for live 

imaging. Using fluorescent protein-labeled transgenic zebrafish lines (e.g. 

pou4f3:GFP, scm1:GFP, and ET20), it is easy to track the behaviors of cells during 

hair cell regeneration in real-time. In addition, it is relatively easy to generate 

transgenic fish lines producing target proteins fused with a fluorescent protein so that 

the sub-cellular trafficking of the target proteins can be imaged in real-time. Such 

imaging will be particularly informative if the functions of the gene of interest are 

closely related to its sub-cellular localization, e.g. a transcription factor responsive to 

cell signaling. 

Finally, the use of small molecule screening could help with our understanding of 

the mechanisms involved in hair cell regeneration. There are mainly two ways to 

incorporate the small molecules into regenerative studies: using chemicals to inhibit 

or stimulate candidate genes/pathways and using chemicals for gene function studies. 

The lateral line system has already been used for large-scale ototoxic chemical 

screening (Chiu, Cunningham, Raible, Rubel, & Ou, 2008). It could also be used for 

screening of small molecule chemicals that block or promote hair cell regeneration. 

Large-scale screening of chemicals could help us to identify the candidate pathways 

involved in the hair cell regeneration process. On the other hand, when testing a 

known gene or pathway, the chemical agonists/antagonists targeting the candidate can 
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be used for in vivo functional studies, a strategy that was utilized in this study to 

understand the functions of the stat3/socs3 pathway in hair cell regeneration. An 

advantage of incorporating small molecules into the regenerative studies is that if any 

regeneration-promoting chemical is identified, it could potentially have clinical 

application towards regenerative medicine. For decades, scientists have strived to 

induce hair cell regeneration in mammals. Such research has so far been focused on 

two strategies: gene therapy (Gubbels et al., 2008; Ryan, Mullen, & Doherty, 2009) 

and stem cell transplantation (Tateya et al., 2003; Kesser & Lalwani, 2009; Oshima et 

al., 2010). While progress has been made, it is still questionable if there will be a truly 

applicable clinical approach in the near future. Pharmacological strategies may have 

greater potential in hair cell regeneration induction for clinical practice. 
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Appendix 
 

List of Supplemental Files 

 

Supplemental file 1. Raw data of five expression profiles generated by DGE. It is a 

tab-delimited text file with six columns. The first column contains the sequences of 

the tags and the second to sixth columns contain the count of the corresponding tags 

in control, 0-hpe, 24-hpe, 48-hpe, and 96-hpe profiles respectively. 

Supplemental file 2. UniGene clusters identified from unambiguously mapped tags. 

It is a tab-delimited text file with six columns. The first column contains the UniGene 

IDs. The second to sixth columns contain the count of the corresponding UniGene 

clusters in control, 0-hpe, 24-hpe, 48-hpe, and 96-hpe profiles respectively. 

Supplemental file 3. Candidate genes identified by comparison of the expression 

profiles during regeneration to the control profiles. It is a tab-delimited text file with 

19 columns. The contents in each column are specified in the header. 

Supplemental file 4. A list of the candidate genes known to be expressed in the inner 

ear and/or the lateral line system during development. It is a tab-delimited text file 

with four columns which contain UniGene IDs, ZFIN IDs, Entrez Gene IDs, and gene 

symbols respectively. 
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