Chemical & Biomolecular Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/2219

Formerly known as the Department of Chemical Engineering.

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Noble Metal Ion-Directed Assembly of 2D Materials for Heterostructured Catalysts and Metallic Micro-Texturing
    (Wiley, 2023-05-07) Little, Joshua M.; Sun, Jiayue; Kamali, Ali; Chen, Amy; Leff, Asher C.; Li, Yang; Borden, Leah K.; Dissanayake, Thilini U.; Essumang, Deborah; Oseleononmen, Benita O.; Liu, Dongxia; Woehl, Taylor J.; Chen, Po-Yen
    Assembling 2D-material (2DM) nanosheets into micro- and macro-architectures with augmented functionalities requires effective strategies to overcome nanosheet restacking. Conventional assembly approaches involve external binders and/or functionalization, which inevitably sacrifice 2DM's nanoscale properties. Noble metal ions (NMI) are promising ionic crosslinkers, which can simultaneously assemble 2DM nanosheets and induce synergistic properties. Herein, a collection of NMI–2DM complexes are screened and categorized into two sub-groups. Based on the zeta potentials, two assembly approaches are developed to obtain 1) NMI-crosslinked 2DM hydrogels/aerogels for heterostructured catalysts and 2) NMI–2DM inks for templated synthesis. First, tetraammineplatinum(II) nitrate (TPtN) serves as an efficient ionic crosslinker to agglomerate various 2DM dispersions. By utilizing micro-textured assembly platforms, various TPtN–2DM hydrogels are fabricated in a scalable fashion. Afterward, these hydrogels are lyophilized and thermally reduced to synthesize Pt-decorated 2DM aerogels (Pt@2DM). The Pt@2DM heterostructures demonstrate high, substrate-dependent catalytic activities and promote different reaction pathways in the hydrogenation of 3-nitrostyrene. Second, PtCl4 can be incorporated into 2DM dispersions at high NMI molarities to prepare a series of PtCl4–2DM inks with high colloidal stability. By adopting the PtCl4–graphene oxide ink, various Pt micro-structures with replicated topographies are synthesized with accurate control of grain sizes and porosities.
  • Item
    Advancements in Label-free Biosensing Using Field-Effect Transistors and Aided by Molecular Dynamics Simulations
    (2019) Guros, Nicholas; Klauda, Jeffery B; Balijepalli, Arvind; Chemical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Biosensors are used to characterize or measure concentrations of physiologically or pathologically significant biomarkers that indicate the health status of a patient, for example, a biomarker associated with a specific disease or cancer. Presently, there is a need to improve the capabilities of biosensors, which includes their rate of detection, limit of detection, and usability. With respect to usability, it is advantageous to develop biosensors that can detect a biomarker that is not labeled, such as with a conventional fluorescent, magnetic, or radioactive label, prior to characterization or measurement by that biosensor. Such biosensors are known as label-free biosensors and are the primary focus of this work. Biosensors are principally evaluated by two standards: their sensitivity to detect a target biomarker at physiologically relevant concentrations and their specificity to detect only the target biomarker in the presence of other molecules. The elements of biosensing critical to improving these two standards are: biorecognition of the biomarker, immobilization of the biorecognition element on the biosensor, and transduction of biomarker biorecognition to a measurable signal. Towards the improvement of sensitivity, electrostatically sensitive field-effect transistors (FET) were fabricated in a dual-gate configuration to enable label-free biosensing measurements with both high sensitivity and signal-to-noise ratio (SNR). This high performance, quantified with several metrics, was principally achieved by performing a novel annealing process that improved the quality of the FET’s semiconducting channel. These FETs were gated with either a conventional oxide or an ionic liquid, the latter of which yielded quantum capacitance-limited devices. Both were used to measure the activity of the enzyme cyclin-dependent kinase 5 (Cdk5) indirectly through pH change, where the ionic-liquid gated FETs measured pH changes at a sensitivity of approximately 75 times higher than the conventional sensitivity limit for pH measurements. Lastly, these FETs were also used to detect the presence of the protein streptavidin through immobilization of a streptavidin-binding biomolecule, biotin, to the FET sensing surface. To study the biomolecular factors that govern the specificity of biomarker biorecognition in label-free biosensing, molecular dynamics (MD) simulations were performed on several proteins. MD simulations were first performed on the serotonin receptor and ion channel, 5-HT3A. These simulations, which were performed for an order of magnitude longer than any previous study, demonstrate the dynamic nature of serotonin (5-HT) binding with 5-HT3A. These simulations also demonstrate the importance of using complex lipid membranes to immobilize 5-HT3A for biosensing applications to adequately replicate native protein function. The importance of lipid composition was further demonstrated using MD simulations of the ion channel alpha-hemolysin (αHL). The results of these simulations clearly demonstrate the lipid-protein structure-function relationship that regulates the ionic current though a lipid membrane-spanning ion channel. Finally, to demonstrate the impact of MD simulations to inform the design of FET biosensing, a strategy to use FETs to measure the ultra-low ionic currents through the ion channel 5-HT3A is outlined. This strategy leverages critical elements of 5-HT biorecognition and ion channel immobilization extracted from MD simulations for the design of the proposed FET sensing surface interface.