A. James Clark School of Engineering
Permanent URI for this communityhttp://hdl.handle.net/1903/1654
The collections in this community comprise faculty research works, as well as graduate theses and dissertations.
Browse
97 results
Search Results
Item Integrated Measurement Technique To Measure Curing Process-dependent Mechanical And Thermal Properties Of Polymeric Materials Using Fiber Bragg Grating Sensors(2009) Wang, Yong; Han, Bongtae; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)An innovative technique based on a fiber Bragg grating (FBG) sensor is proposed to measure the critical mechanical and thermal properties of polymeric materials. The properties include (1) chemical shrinkage evolution during curing, (2) modulus evolution during curing, (3) glass transition temperature (4) coefficient of thermal expansion (CTE), and (5) visco-elastic properties. Optimum specimen configurations are proposed from the theoretical analysis. Then an efficient numerical procedure is established to determine the material properties from the measured Bragg wavelength (BW) shift. The technique is implemented with various polymeric materials. The measured quantities are verified through a self-consistency test as well as the existing testing methods such as a warpage measurement of a bi-material strip, and a TMA measurement. The evolution properties obtained at a curing temperature are extended further by combining them with the conventional isothermal DSC experiments. Based on the existing theories, the evolution properties can be predicted at any temperatures. The proposed technique greatly enhances the capability to characterize the mechanical properties and behavior of polymeric materials. Since the specimen preparation is very straightforward, the proposed method can be routinely practiced and the measurement can be completely automated. It will provide a much-needed tool for rapid but accurate assessment of polymer properties, which, in turn, will enhance the accuracy of predictive modeling for design optimization of a microelectronics product at the conceptual stage of product development.Item EVOLUTION OF THE MICROSTRUCTURE AND VISCOPLASTIC BEHAVIOR OF MICROSCALE SAC305 SOLDER JOINTS AS A FUNCTION OF MECHANICAL FATIGUE DAMAGE(2009) Cuddalorepatta, Gayatri; Dasgupta, Abhijit; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The effect of mechanical cycling fatigue damage and isothermal aging histories on the evolution of the constitutive and fatigue responses, and microstructure of microscale SAC305 solder joints is investigated. In particular, the study examines if joint dependent behavior should be expected from as-fabricated and cycled microscale SAC305 joints that exhibit an initial non-homogenous coarse-grained Sn microstructure. In addition, the ability of traditionally used macroscale constitutive models based on continuum mechanics to represent the viscoplastic constitutive behavior of the non-homogenous as-fabricated microscale SAC305 specimens is explored. Insights into the effect of key microstructural features and dominant creep mechanisms influencing the measured viscoplastic behavior of SAC305 are provided using a multi-scale mechanistic modeling framework. Modified lap-shear microscale SAC305 specimens are characterized using the thermomechanical microscale test setup (TMM). Microscale SAC305 solder specimens show significant piece-to-piece variability in the viscoplastic constitutive properties under identical loading histories in the as-fabricated state. The mechanical response is strongly influenced by the grain microstructure across the entire joint, which is non-repeatable and comprises of very few highly anisotropic Sn grains. The statistical non-homogeneity in the microstructure and the associated variability in the mechanical properties in the microscale SAC305 test specimen are far more significant than in similar Sn37Pb specimens, and are consistent with those reported for functional microelectronics solder interconnects. In spite of the scatter, as-fabricated SAC305 specimens exhibit superior creep-resistance (and lower stress relaxation) than Sn37Pb. Macroscale creep model constants represent the non-homogeneous behavior of microscale joints in an average sense. Macroscale modeling results show that the range of scatter measured from macroscale creep model constants is within the range of scatter obtained from the stress relaxation predictions. Stress relaxation predictions are strongly sensitive to the inclusion or exclusion of primary creep models. The proposed multiscale framework effectively captures the dominant creep deformation mechanisms and the influence of key microstructural features on the measured secondary creep response of microscale as-fabricated SAC305 solder specimens. The multiscale model predictions for the effect of alloy composition on SAC solders provide good agreement with test measurements. The multiscale model can be extended to understand the effects of other parameters such as aging and manufacturing profiles, thereby aiding in the effective design and optimization of the viscoplastic behavior of SAC alloys. Accumulated fatigue damage and isothermal aging are found to degrade the constitutive and mechanical fatigue properties of the solder. The scatter gradually decreases with an increasing state of solder damage. Compared to the elastic-plastic and creep measurements, the variability in the fatigue life of these non-homogenous solder joints under mechanical fatigue tests is negligible. Recrystallization is evident under creep and mechanical fatigue loads. Gradual homogenization of the Sn grain microstructure with damage is a possible reason for the observed evolution of scatter in the isothermal mechanical fatigue curves. The yield stress measurements suggest that SAC305 obeys a hardening rule different from that of isotropic or kinematic hardening. The measured degradation in elastic, plastic and yield properties is captured reasonably well with a continuum damage mechanics model from the literature.Item Lipid-Hydrogel Nanoparticles: Synthesis Methods and Characterization(2009) Hong, Jennifer S.; Raghavan, Srinivasa R; Bioengineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)This dissertation focuses on the directed self-assembly of nanoscale soft matter particles using methods based on liposome-templating. Nanoscale liposomes, nano-sized hydrogel particles ("nanogels"), and hybrids of the two have enormous potential as carriers in drug delivery and nanotoxicity studies, and as nanovials for enzyme encapsulation and single molecule studies. Our goal is to develop assembly methods that produce stable nanogels or hybrid lipid-polymer nanoparticles, using liposomes as size and shape templates. First we describe a bulk method that employs liposomes to template relatively monodisperse nanogels composed of the biopolymer, alginate, which is a favorable material for nanogel formation because it uses a gentle ionic crosslinking mechanism that is suitable for the encapsulation of cells and biomolecules. Liposomes encapsulating sodium alginate are suspended in aqueous buffer containing calcium chloride, and thermal permeabilization of the lipid membrane facilitates transmembrane diffusion of Ca2+ ions from the surrounding buffer into the intraliposomal space, ionically crosslinking the liposome core. Subsequent lipid removal results in bare calcium alginate nanogels with a size distribution consistent with that of their liposome template. The second part of our study investigates the potential for microfluidic-directed formation of lipid-alginate hybrid nanoparticles by adapting the above bulk self-assembly procedure within a microfluidic device. Specifically we investigated the size control of alginate nanogel self-assembly under different flow conditions and concentrations. Finally, we investigate the microfluidic directed self-assembly of lipid-polymer hybrid nanoparticles, using phospholipids and an N-isopropylacrylamide monomer as the liposome and hydrogel precursors, respectively. Microfluidic hydrodynamic focusing is used to control the convective-diffusive mixing of the two miscible nanoparticle precursor solutions to form nanoscale vesicles with encapsulated hydrogel precursor. The encapsulated hydrogel precursor is polymerized off-chip and the resultant hybrid nanoparticle size distributions are highly monodisperse and precisely controlled across a broad range relevant to the targeted delivery and controlled release of encapsulated therapeutic agents. Given the ability to modify liposome size and surface properties by altering the lipid components and the many polymers of current interest for nanoparticle synthesis, this approach could be adapted for a variety of hybrid nanoparticle systems.Item NANOSTRUCTURED THIN FILM POLYMER ELECTROLYTES FOR FLEXIBLE BATTERY APPLICATIONS(2009) Ghosh, Ayan; Kofinas, Peter; Chemical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)In recent years, the interest in polymeric batteries has increased dramatically. With the advent of lithium ion batteries being used in cell phones and laptop computers, the search for an all solid state battery has continued. Current configurations have a liquid or gel electrolyte along with a separator between the anode and cathode. This leads to problems with electrolyte loss and decreased performance over time. The highly reactive nature of these electrolytes necessitates the use of protective enclosures which add to the size and bulk of the battery. Polymer electrolytes are more compliant than conventional inorganic glass or ceramic electrolytes. The goal of this work was to design and investigate novel nanoscale polymer electrolyte flexible thin films based on the self-assembly of block copolymers. Block copolymers were synthesized, consisting of a larger PEO block and a smaller block consisting of random copolymer of methyl methacrylate (MMA) and the lithium salt of methacrylic acid (MAALi). The diblock copolymer [PEO-b-(PMMA-ran-PMAALi)] with added lithium bis(oxalato)borate, LiBC4O8 (LiBOB) salt (in the molar ratio ethylene oxide:LiBOB = 3:1) was used to form flexible translucent films which exhibited nearly two orders of magnitude greater conductivity than that shown by traditional high molecular weight PEO homopolymer electrolytes, in the absence of ceramic fillers and similar additives. The presence of the smaller second block and the plasticizing effect of the bulky lithium salt were shown to effectively reduce the crystallinity of the solid electrolyte, resulting in improved ion transporting behavior. The tailored solid self-assembled diblock copolymer electrolyte matrix also exhibits an exceptionally high lithium-ion transference number of 0.9, compared to a value between 0.2 and 0.5, shown by typical polymer-lithium salt materials. The electrolyte material also has a wide electrochemical stability window and excellent interfacial behavior with lithium metal electrode. The combination of these properties make electrolyte membranes composed of the diblock copolymer PEO-b-(PMMA-ran-PMAALi) and LiBOB salt, viable electrolyte candidates for flexible lithium ion based energy conversion/storage devices.Item PYROLYSIS MODEL PARAMETER OPTIMIZATION USING A CUSTOMIZED STOCHASTIC HILL-CLIMBER ALGORITHM AND BENCH SCALE FIRE TEST DATA(2009) Webster, Robert Dale; Trouvé, Arnaud C; Fire Protection Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)This study examines the ability of a stochastic hill-climber algorithm to develop an input parameter set to a finite difference one-dimensional model of transient conduction with pyrolysis to match experimentally determined mass loss rates of three sample materials exposed to a range of constant incident heat flux. The results of the stochastic hill-climber algorithm developed as part of the present study are compared to results obtained with genetic algorithms. Graphical documentation of the impact of single parameter mutation is provided. Critical analysis of the physical meaning of parameter sets, and their realistic range of application, is presented. Criteria are also suggested for stability and resolution of solid phase temperature and fuel mass loss rate in an implicit Crank-Nicolson scheme with explicit treatment of the heat generation source term.Item MOLECULAR DYNAMICS SIMULATIONS OF LASER INDUCED SHOCK RESPONSE IN REACTIVE Ni/Al NANOLAMINATES(2009) Meissner, Alexander Blacque; Zachariah, Michael; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)To characterize the self-propagating, high-temperature exothermic alloying reactions of Ni/Al nanoscaled multilayered films induced by laser pulse shock loading, classical molecular dynamics simulations were performed. In the current work, a novel technique was developed to facilitate the energy input and distribution into nanolaminate thin films. The laser pulse shock loading technique enables the initial shock response of the material to be captured as well as the late-time mass diffusion controlled alloying reaction and Ni3Al formation. Shock compression raises the temperature, pressure, and density of the Ni and Al layers which triggers the Ni to diffuse into the Al and initiate the self-propagating alloying reaction. Thermodynamic states, enthalpy of reaction, and global reaction rates of the laminated films were obtained. It was determined that the series of complex rarefaction and reflection waves play a significant role in altering the thermodynamic state of the laminate. Attributes of the rarefaction and reflection waves are controlled by the geometry and thickness of the alternating layers. The dependence of layer thickness on the temperature, pressure, enthalpy of reaction, and global reaction rate was investigated and characterized.Item NANOSTRUCTURE INVESTIGATION OF POLYMER SOLUTIONS, POLYMER GELS, AND POLYMER THIN FILMS(2009) Lee, Wonjoo; Bribeer, Robert M; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)This thesis discusses two systems. One is structured hydrogels which are hydrogel systems based on crosslinked poly((2-dimethylamino)ethyl methacrylate) (PDMAEMA) containing micelles which form nanoscale pores within the PDMAEMA hydrogel. The other is nanoporous block copolymer thin films where solvent selectivity is exploited to create nanopores in PS-b-P4VP thin films. Both of these are multicomponent polymer systems which have nanoscale porous structures. 1. Small angle neutron scattering of micellization of anionic surfactants in water, polymer solutions and hydrogels Nanoporous materials have been broadly investigated due to the potential for a wide range of applications, including nano-reactors, low-K materials, and membranes. Among those, molecularly imprinted polymers (MIP) have attracted a large amount of interest because these materials resemble the "lock and key" paradigm of enzymes. MIPs are created by crosslinking either polymers or monomers in the presence of template molecules, usually in water. Initially, functional groups on the polymer or the monomer are bound either covalently or noncovalently to the template, and crosslinking results in a highly crosslinked hydrogel. The MIPs containing templates are immersed in a solvent (usually water), and the large difference in the osmotic pressure between the hydrogel and solvent removes the template molecules from the MIP, leaving pores in the polymer network containing functionalized groups. A broad range of different templates have been used ranging from molecules to nanoscale structures inclucing stereoisomers, virus, and micelles. When micelles are used as templates, the size and shape before and after crosslinking is an important variable as micelles are thermodynamic objects whose structure depends on the surfactant concentration of the solution, temperature, electrolyte concentration and polymer concentration. In our research, the first goal is to understand the micellization of anionic surfactants in polymer solutions and the corresponding hydrogels using small angle neutron scattering (SANS). SANS has been widely used to investigate structures ranging from sub-nanometer to sub-micrometer. Since the scattering lengths of H and D atoms are quite different, the scattering contrast can be enhanced (and varied) through isotopic labeling. It is possible to investigate the structure of micelles in polymer solutions and hydrogels using H/D contrast matching methods with SANS. For this aim, water-soluble and chemically crosslinkgable poly((2-dimethylamino)ethyl methacrylate) (PDMAEMA) was synthesized using group transfer polymerization. In order to control the size and shape of micelles, the degree of quaternization of the polymer was also controlled through the reaction of PDMAEMA with methyl iodide. The micellization of deuterated sodium dodecylsulfate (d-SDS) in (quaternized) PDMAEMA solutions and the corresponding hydrogels was then observed using SANS and the size and shape of d-SDS micelles was obtained by modeling. 2. Nanopatterning using block copolymer/homopolymer blends Block copolymers are well-known to self-assemble into meso- and nano-scale structures. The use of block copolymers for nanostructured patterns has attracted increasing attention due to their potential use as templates and scaffolds for the fabrication of functional nanostructures. In order to realize the potential of these materials, it is necessary to be able to control the orientation of the nanoscale pattern in a precise manner. Numerous methods such as manipulation of the interfacial surface energies, use of electric fields, and controlling the rate of solvent evaporation have developed to control orientation. In addition, it has been shown that nanopores within cylindrical domains oriented normal to the substrate can be generated by several methods. For example, one component can be degraded by UV exposure, or the homopolymer in a block copolymer/homopolymer blend can be extracted in a selective solvent. In our work, polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP)/poly(4-vinylpyridine) (P4VP) films on silicon substrates were prepared using spincoating. The homopolymer was then extracted in ethanol generating pores perpendicular to the substrate. It is noted that the pore size and density were readily controlled by the amount of P4VP homopolymer in the PS-b-P4VP/P4VP solutions, giving simple control of the film structure. It was also possible to make pores more uniform and ordered by annealing in solvent vapor before extracting the homopolymer.Item Wafer-scale process and materials optimization in cross-flow atomic layer deposition(2009) Lecordier, Laurent Christophe; Rubloff, Gary W; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The exceptional thickness control (atomic scale) and conformality (uniformity over nanoscale 3D features) of atomic layer deposition (ALD) has made it the process of choice for numerous applications from microelectronics to nanotechnology, and for a wide variety of ALD processes and resulting materials. While its benefits derive from self-terminated chemisorbed reactions of alternatively supplied gas precursors, identifying a suitable process window in which ALD's benefits are realized can be a challenge, even in favorable cases. In this work, a strategy exploiting in-situ gas phase sensing in conjunction with ex-situ measurements of the film properties at the wafer scale is employed to explore and optimize the prototypical Al2O3 ALD process. Downstream mass-spectrometry is first used to rapidly identify across the [H2O x Al(CH3)3] process space the exposure conditions leading to surface saturation. The impact of precursor doses outside as well as inside the parameter space outlined by mass-spectrometry is then investigated by characterizing film properties across 100 mm wafer using spectroscopic ellipsometry, CV and IV electrical characterization, XPS and SIMS. Under ideal dose conditions, excellent thickness uniformity was achieved (1sigma/mean<1%) in conjunction with a deposition rate and electrical properties in good agreement with best literature data. As expected, under-dosing of precursor results in depletion of film growth in the flow direction across the wafer surface. Since adsorbed species are reactive with respect to subsequent dose of the complementary precursor, such depletion magnifies non-uniformities as seen in the cross-flow reactor, thereby decorating deviations from a suitable ALD process recipe. Degradation of the permittivity and leakage current density across the wafer was observed though the film composition remained unchanged. Upon higher water dose in the over-exposure regime, deposition rates increased by up to 40% while the uniformity degraded. In contrast, overdosing of TMA and ozone (used for comparison to water) did not affect the process performances. These results point to complex saturation dynamics of water dependent on partial pressure and potential multilayer adsorption caused by hydrogen-bonding.Item Characterization of Electrodeposited Chitosan: an Interfacial Layer for Bio-assembly and Sensing(2009) Buckhout-White, Susan Lynn; Rubloff, Gary W; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Microfluidics and Lab-on-a-Chip devices have revolutionized the field of analytical biology. To fully optimize the potential of the microfluidic environment it is critical to be able to isolate reactions in specific locations within a channel. One solution is found using chitosan, an amine-rich biopolymer with pH responsive solubility. Induction of hydrolysis at patterned electrodes within the fluidic channel provides a means to spatially control the pH, thus enabling biochemical functionalization that is both spatially and temporally programmable. While chitosan electrodeposition has proven to be reliable at producing films, its growth characteristics are not well understood. In situ optical characterization methods of laser reflectivity, fluorescence microscopy and Raman spectroscopy have been employed to understand the growth rate inter diffusion and lateral resolution of the deposition process. These techniques have also been implemented in determining where a molecule bound to an amine site of the polymer is located within the film. Currently, electrodeposited chitosan films are primarily used for tethering of biomolecules in the recreation of metabolic pathways. Beyond just a biomolecular anchor, chitosan provides a way to incorporate inorganic nanoparticles. These composite structures enable site-specific sensors for the identification of small molecules, an important aspect to many Lab-on-a-Chip applications. New methods for creating spatially localized sites for surface enhanced Raman spectroscopy (SERS) has been developed. These methods have been optimized for particle density and SERS enhancement using TEM and Raman spectroscopy. Through optimization, a viable substrate with retained chitosan amine activity capable of integration into microfluidics has been developed.Item Bottom-Up Multiferroic Nanostructures(2009) Ren, Shenqiang; Wuttig, Manfred; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Multiferroic and especially magnetoelectric (ME) nanocomposites have received extensive attention due to their potential applications in spintronics, information storage and logic devices. The extrinsic ME coupling in composites is strain mediated via the interface between the piezoelectric and magnetostrictive components. However, the design and synthesis of controlled nanostructures with engineering enhanced coupling remain a significant challenge. The purpose of this thesis is to create nanostructures with very large interface densities and unique connectivities of the two phases in a controlled manner. Using inorganic solid state phase transformations and organic block copolymer self assembly methodologies, we present novel self assembly "bottom-up" techniques as a general protocol for the nanofabrication of multifunctional devices. First, Lead-Zirconium-Titanate/Nickel-Ferrite (PZT/NFO) vertical multilamellar nanostructures have been produced by crystallizing and decomposing a gel in a magnetic field below the Curie temperature of NFO. The ensuing microstructure is nanoscopically periodic and anisotropic. The wavelength of the PZT/NFO alternation, 25 nm, agrees within a factor of two with the theoretically estimated value. The macroscopic ferromagnetic and magnetoelectric responses correspond qualitatively and semi-quantitatively to the features of the nanostructure. The maximum of the field dependent magnetoelectric susceptibility equals 1.8 V/cm Oe. Second, a magnetoelectric composite with controlled nanostructures is synthesized using co-assembly of two inorganic precursors with a block copolymer. This solution processed material consists of hexagonally arranged ferromagnetic cobalt ferrite (CFO) nano-cylinders within a matrix of ferroelectric Lead-Zirconium-Titanate (PZT). The initial magnetic permeability of the self-assembled CFO/PZT nanocomposite changes by a factor of 5 through the application of 2.5 V. This work may have significant impact on the development of novel memory or logic devices through self assembly techniques. It also demonstrates a universal two-phase hard template application. Last, solid-state self assembly had been used recently to form pseudoperiodic chessboard-like nanoscale morphologies in a series of chemically homogeneous complex oxide systems. We improved on this approach by synthesizing a spontaneously phase separated nanolamellar BaTiO3-CoFe2O4 bi-crystal. The superlattice is magnetoelectric with a frequency dependent coupling. The BaTiO3 component is a ferroelectric relaxor with a Vogel-Fulcher temperature of 311 K. Since the material can be produced by standard ceramic processing methods, the discovery represents great potential for magnetoelectric devices.