Mechanical Engineering
Permanent URI for this communityhttp://hdl.handle.net/1903/2263
Browse
5 results
Search Results
Item ON THE IMPACT BETWEEN A WATER FREE SURFACE AND A RIGID STRUCTURE(2017) Wang, An; Duncan, James H; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)In this thesis, the impact between a water surface and a structure is addressed in two related experiments. In the first experiment, the impact of a plunging breaking wave on a partially submerged 2D structure is studied. The evolution of the water surface profiles are measured with with a cinematic laser-induced flourescence technique, while the pressure distribution on the wall is measured simultaneously with an array of fast-response pressure sensors. When the structure is placed at a particular streamwise location in the wave tank and the bottom surface of the structure is located 13.3~cm below the mean water level, a ``flip-through'' impact occurs. In this case, the water surface profile between the crest and the front face of the structure is found to shrink to a point as the wave approaches the structure without breaking. High acceleration of the contact point motion is observed in this case. When the bottom of the structure is located at the mean water level, high-frequency pressure oscillations are observed. These pressure oscillations are believed to be caused by air that is entrapped near the wave crest during the impact process. When the bottom of the structure is sufficiently far above the mean water level, the first contact with the structure is the impact between the wave crest and the bottom corner of the structure. This latter condition, produces the largest impact pressures on the structure. In the second experiment, the slamming of a flat plate on a quiescent water surface is studied. A two-axis high-speed carriage is used to slam a flat plate on the water surface with high horizontal and vertical velocity. The above-mentioned LIF system is used to measure the evolution of the free surface adjacent to the plate. Measurements are performed with the horizontal and vertical carriage speeds ranging from zero to 6 m/s and 0.6 to 1.2 m/s, respectively, and the plate oriented obliquely to horizontal. Two types of splash are found, a spray of droplets and ligaments that is ejected horizontally from under the plate in the beginning of the impact process and a highly sloped spray sheet that is ejected later when the high edge of the plate moves below the water surface. Detailed measurements of these features are presented and simple models are used to interpret the data.Item Scalable, Composable Operators for Defect Design and Analysis(2016) Weisburgh, Rose Ellen; Chung, Peter W; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)It is well understood that defects adversely affect the electro-mechanical properties of materials. Ideally, defect compositions of device materials could be measured, but present technology in the field of atomic defect detection is either destructive in nature, or is unable to determine the precise atomic composition of materials. In the adjacent field of damage detection in large-scale truss networks, algorithms based on spectral measurements have successfully been employed to locate damaged members. Already similar principles have been applied to material lattices experimentally by using Raman Spectroscopy to qualitatively approximate defect densities within materials. However, the applications have largely been limited to surface defects or two-dimensional materials, and the host lattices and defect types are primarily studied anecdotally. This thesis details a numerical method for determining the precise phonon or vibration spectra of material lattices with defects. The dynamical matrices of lattices containing defects are calculated by introducing defects systematically into the dynamical matrices of pristine, defect-free lattices using linear operators. Each operation modifies or removes an individual bond or interaction. Complex defect configurations can be composed through reiterative application of the operators. The proposed methods may be applied to systems containing any interaction type or bond order, including space trusses and atomic lattices. The method is demonstrated by numerically determining the convergence rate of phonon properties in the dilute limit of a single point vacancy. Then the same methodology is applied to two-dimensional atomic lattices with central forces, two-dimension truss networks with distributed mass, as well as three-dimensional atomic lattices with non-linear many body potentials. In each example, the defect structure and properties are shown to alter the spectral properties of the materials.Item Prediction of Upward Flame Spread over Polymers(2016) Leventon, Isaac Tibor; Stoliarov, Stanislav I; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)In this work, the existing understanding of flame spread dynamics is enhanced through an extensive study of the heat transfer from flames spreading vertically upwards across 5 cm wide, 20 cm tall samples of extruded Poly (Methyl Methacrylate) (PMMA). These experiments have provided highly spatially resolved measurements of flame to surface heat flux and material burning rate at the critical length scale of interest, with a level of accuracy and detail unmatched by previous empirical or computational studies. Using these measurements, a wall flame model was developed that describes a flame’s heat feedback profile (both in the continuous flame region and the thermal plume above) solely as a function of material burning rate. Additional experiments were conducted to measure flame heat flux and sample mass loss rate as flames spread vertically upwards over the surface of seven other commonly used polymers, two of which are glass reinforced composite materials. Using these measurements, our wall flame model has been generalized such that it can predict heat feedback from flames supported by a wide range of materials. For the seven materials tested here – which present a varied range of burning behaviors including dripping, polymer melt flow, sample burnout, and heavy soot formation – model-predicted flame heat flux has been shown to match experimental measurements (taken across the full length of the flame) with an average accuracy of 3.9 kW m-2 (approximately 10 – 15 % of peak measured flame heat flux). This flame model has since been coupled with a powerful solid phase pyrolysis solver, ThermaKin2D, which computes the transient rate of gaseous fuel production of constituents of a pyrolyzing solid in response to an external heat flux, based on fundamental physical and chemical properties. Together, this unified model captures the two fundamental controlling mechanisms of upward flame spread – gas phase flame heat transfer and solid phase material degradation. This has enabled simulations of flame spread dynamics with a reasonable computational cost and accuracy beyond that of current models. This unified model of material degradation provides the framework to quantitatively study material burning behavior in response to a wide range of common fire scenarios.Item Cause and Effect of Threshold-Voltage Instability on the Reliability of Silicon-Carbide MOSFETs(2011) Lelis, Aivars J.; Goldsman, Neil; Reliability Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)A significant instability of the threshold voltage (VT) in silicon carbide (SiC) MOSFETs in response to gate-bias and ON-state current stressing was discovered and examined as a function of bias, temperature, and time. It was determined that the likely mechanism causing this effect is the charging and discharging of gate-oxide traps, located close to the interface of the SiC conducting channel, via a direct tunneling mechanism. High-temperature reverse-bias induced leakage current in the OFF-state was identified as a potential failure mode. A simultaneous two-way tunneling model was developed, based on an existing one-way tunneling model, to simulate the time-dependent and field-dependent charging and discharging of the near-interfacial oxide traps in response to an applied gate-bias stress. The simulations successfully matched experimental results, both with respect to measurement time and to bias-stress time as a function of gate bias. Experimental results were presented, showing that the VT instability increases with both increasing gate-bias-stress time and bias-stress magnitude. The measurement conditions, including gate-ramp speed and direction, were shown to have a significant influence on the measured result, with a 20-μs measurement revealing instabilities three times greater than those at standard 1-s measurement speeds, whereas 1-ks measurements showed shifts only half as large. High-temperature bias stressing was found to cause even more significant increases in the VT instability. ON-state current stressing was found to also increase the VT instability, due to self-heating effects. VT shifts as large as 2 V were reported, with the number of calculated oxide traps switching charge state varying between 1×1011 and 8×1011 cm–2, depending on processing, stress, and measurement conditions. The standard post-oxidation NO anneal was shown to reduce the number of active oxide traps by about 70 percent. The dominant oxide trap was identified as an E-prime-center type defect—a weak Si-Si bond due to an oxygen vacancy which has been broken during processing or subsequent device stressing. The large increase in bias-stress induced VT instability at temperatures above 100 °C was explained by an increase in the number of active E-prime-center type defects. Existing reliability qualification standards based on silicon device technology are inadequate for SiC MOSFETs and need to be revised, with particular attention paid to the measurement conditions.Item Modeling and Experimental Techniques to Demonstrate Nanomanipulation With Optical Tweezers(2011) Balijepalli, Arvind K.; Gupta, Satyandra K; LeBrun, Thomas W; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The development of truly three-dimensional nanodevices is currently impeded by the absence of effective prototyping tools at the nanoscale. Optical trapping is well established for flexible three-dimensional manipulation of components at the microscale. However, it has so far not been demonstrated to confine nanoparticles, for long enough time to be useful in nanoassembly applications. Therefore, as part of this work we demonstrate new techniques that successfully extend optical trapping to nanoscale manipulation. In order to extend optical trapping to the nanoscale, we must overcome certain challenges. For the same incident beam power, the optical binding forces acting on a nanoparticle within an optical trap are very weak, in comparison with forces acting on microscale particles. Consequently, due to Brownian motion, the nanoparticle often exits the trap in a very short period of time. We improve the performance of optical traps at the nanoscale by using closed-loop control. Furthermore, we show through laboratory experiments that we are able to localize nanoparticles to the trap using control systems, for sufficient time to be useful in nanoassembly applications, conditions under which a static trap set to the same power as the controller is unable to confine a same-sized particle. Before controlled optical trapping can be demonstrated in the laboratory, key tools must first be developed. We implement Langevin dynamics simulations to model the interaction of nanoparticles with an optical trap. Physically accurate simulations provide a robust platform to test new methods to characterize and improve the performance of optical tweezers at the nanoscale, but depend on accurate trapping force models. Therefore, we have also developed two new laboratory-based force measurement techniques that overcome the drawbacks of conventional force measurements, which do not accurately account for the weak interaction of nanoparticles in an optical trap. Finally, we use numerical simulations to develop new control algorithms that demonstrate significantly enhanced trapping of nanoparticles and implement these techniques in the laboratory. The algorithms and characterization tools developed as part of this work will allow the development of optical trapping instruments that can confine nanoparticles for longer periods of time than is currently possible, for a given beam power. Furthermore, the low average power achieved by the controller makes this technique especially suitable to manipulate biological specimens, but is also generally beneficial to nanoscale prototyping applications. Therefore, capabilities developed as part of this work, and the technology that results from it may enable the prototyping of three-dimensional nanodevices, critically required in many applications.