Department of Veterinary Medicine

Permanent URI for this communityhttp://hdl.handle.net/1903/2231

Browse

Search Results

Now showing 1 - 8 of 8
  • Thumbnail Image
    Item
    HOST-PATHOGEN INTERACTION DURING CRYPTOCOCCUS NEOFORMANS CNS INFECTION
    (2024) Chen, Yanli; Shi, Meiqing MS; Veterinary Medical Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Cryptococcus neoformans (C. neoformans) is an opportunistic fungal pathogen widely distributed in the environment globally. C. neoformans infection initiates from the lung through inhaling the spores. While most healthy individuals can clear the fungus or contain the fungus in the granuloma, immunosuppressed patients and a small group of healthy populations fail in controlling the cryptococcal fungal pulmonary infection. In those cases, C. neoformans transmigrates from the lung to the central nervous system (CNS) and causes fatal meningoencephalitis, which accounts for 112,000 deaths each year worldwide. However, we have a very limited understanding of the transmigration of C. neoformans from the bloodstream to the brain in vivo, and the mechanism involved in the clearance of the organism in the brain remains poorly understood. In this study, we first report a novel approach to quantitatively analyze the interactions between C. neoformans and brain endothelial cells in a mouse model using flow cytometry. Using this system, we show that C. neoformans was internalized by brain endothelial cells in vivo and that mice infected with acapsular or heat-killed C. neoformans yeast cells displayed a lower frequency of brain endothelial cells containing the yeast cell compared to mice infected with wild-type or viable yeast cells, respectively. We further demonstrate that brain endothelial cells were invaded by the serotype A strain (H99 strain) at a higher rate compared to the serotype D strain (52D strain). Moreover, we found that clearance of C. neoformans in the brain correlates with accumulation and pro-inflammatory M1 polarization of Ly6Chi mononuclear phagocytes and that these phagocytes play a critical role in the clearance of C. neoformans in the brain. Notably, the accumulation of Ly6Chi mononuclear phagocytes coincides with enhanced secretions of TNF and IFN-γ in the brain. TNF receptor (TNFR) signaling, but not IFN-γ receptor (IFN-γR) signaling, mediates the recruitment of Ly6Chi mononuclear phagocytes to the brain in a cell-intrinsic manner. By contrast, IFN-γ induces M1 polarization of Ly6Chi mononuclear phagocytes. Disruption of TNFR or IFN-γR signaling enhances cryptococcal growth in the brain. Thus, Ly6Chi mononuclear phagocytes act as effector cells for cryptococcal clearance in the brain, involving TNFR as well as IFN-γR signaling. Collectively, our study established that 1) internalization of C. neoformans by brain endothelial cells occurred in vivo and offered a powerful approach to quantitatively analyze fungal migration into the brain; 2) Ly6Chi mononuclear phagocytes accumulate in the brain during brain infection with C. neoformans and function as effector cells for clearance of C. neoformans in the brain involving TNFR signaling and IFN-γ signaling.
  • Thumbnail Image
    Item
    Cryptococcal Immune Reconstitution Inflammatory Syndrome: From Clinical Studies to Animal Experiments
    (MDPI, 2022-12-07) Shi, Zoe W.; Chen, Yanli; Ogoke, Krystal M.; Strickland, Ashley B.; Shi, Meiqing
    Cryptococcus neoformans is an encapsulated pathogenic fungus that initially infects the lung but can migrate to the central nervous system (CNS), resulting in meningoencephalitis. The organism causes the CNS infection primarily in immunocompromised individuals including HIV/AIDS patients, but also, rarely, in immunocompetent individuals. In HIV/AIDS patients, limited inflammation in the CNS, due to impaired cellular immunity, cannot efficiently clear a C. neoformans infection. Antiretroviral therapy (ART) can rapidly restore cellular immunity in HIV/AIDS patients. Paradoxically, ART induces an exaggerated inflammatory response, termed immune reconstitution inflammatory syndrome (IRIS), in some HIV/AIDS patients co-infected with C. neoformans. A similar excessive inflammation, referred to as post-infectious inflammatory response syndrome (PIIRS), is also frequently seen in previously healthy individuals suffering from cryptococcal meningoencephalitis. Cryptococcal IRIS and PIIRS are life-threatening complications that kill up to one-third of affected people. In this review, we summarize the inflammatory responses in the CNS during HIV-associated cryptococcal meningoencephalitis. We overview the current understanding of cryptococcal IRIS developed in HIV/AIDS patients and cryptococcal PIIRS occurring in HIV-uninfected individuals. We also describe currently available animal models that closely mimic aspects of cryptococcal IRIS observed in HIV/AIDS patients.
  • Thumbnail Image
    Item
    Alternatively activated lung alveolar and interstitial macrophages promote fungal growth
    (Elsevier, 2023-05-19) Strickland, Ashley B.; Chen, Yanli; Sun, Donglei; Shi, Meiqing
    How lung macrophages, especially interstitial macrophages (IMs), respond to invading pathogens remains elusive. Here, we show that mice exhibited a rapid and substantial expansion of macrophages, especially CX3CR1+ IMs, in the lung following infection with Cryptococcus neoformans, a pathogenic fungus leading to high mortality among patients with HIV/AIDS. The IM expansion correlated with enhanced CSF1 and IL-4 production and was affected by the deficiency of CCR2 or Nr4a1. Both alveolar macrophages (AMs) and IMs were observed to harbor C. neoformans and became alternatively activated following infection, with IMs being more polarized. The absence of AMs by genetically disrupting CSF2 signaling reduced fungal loads in the lung and prolonged the survival of infected mice. Likewise, infected mice depleted of IMs by the CSF1 receptor inhibitor PLX5622 displayed significantly lower pulmonary fungal burdens. Thus, C. neoformans infection induces alternative activation of both AMs and IMs, which facilitates fungal growth in the lung.
  • Thumbnail Image
    Item
    IL-27 Signaling Promotes Th1 Responses and Is Required to Inhibit Fungal Growth in the Lung during Repeated Exposure to Aspergillus fumigatus
    (American Association of Immunologists, 2022-01-01) Strickland, Ashley B.; Sun, Donglei; Sun, Peng; Chen, Yanli; Liu, Gongguan; Shi, Meiqing
    Aspergillus fumigatus is an opportunistic fungal pathogen that causes a wide spectrum of diseases in humans, including life-threatening invasive infections as well as several hypersensitivity respiratory disorders. Disease prevention is predicated on the host’s ability to clear A. fumigatus from the lung while also limiting inflammation and preventing allergic responses. IL-27 is an important immunoregulatory cytokine, but its role during A. fumigatus infection remains poorly understood. In contrast to most infection settings demonstrating that IL-27 is anti-inflammatory, in this study we report that this cytokine plays a proinflammatory role in mice repeatedly infected with A. fumigatus. We found that mice exposed to A. fumigatus had significantly enhanced secretion of IL-27 in their lungs. Genetic ablation of IL-27Rα in mice resulted in significantly higher fungal burdens in the lung during infection. The increased fungal growth in IL-27Rα−/− mice was associated with reduced secretion of IL-12, TNF-α, and IFN-γ, diminished T-bet expression, as well as a reduction in CD4+ T cells and their activation in the lung, demonstrating that IL-27 signaling promotes Th1 immune responses during repeated exposure to A. fumigatus. In addition, infected IL-27Rα−/− mice displayed reduced accumulation of dendritic cells and exudate macrophages in their lungs, and these cells had a lower expression of MHC class II. Collectively, this study suggests that IL-27 drives type 1 immunity and is indispensable for inhibiting fungal growth in the lungs of mice repeatedly exposed to A. fumigatus, highlighting a protective role for this cytokine during fungal infection.
  • Thumbnail Image
    Item
    CXCR6+CD4+ T cells promote mortality during Trypanosoma brucei infection
    (PLOS, 2021-10-06) Liu, Gongguan; Abas, Osama; Strickland, Ashley B.; Chen, Yanli; Shi, Meiqing
    Liver macrophages internalize circulating bloodborne parasites. It remains poorly understood how this process affects the fate of the macrophages and T cell responses in the liver. Here, we report that infection by Trypanosoma brucei induced depletion of macrophages in the liver, leading to the repopulation of CXCL16-secreting intrahepatic macrophages, associated with substantial accumulation of CXCR6+CD4+ T cells in the liver. Interestingly, disruption of CXCR6 signaling did not affect control of the parasitemia, but significantly enhanced the survival of infected mice, associated with reduced inflammation and liver injury. Infected CXCR6 deficient mice displayed a reduced accumulation of CD4+ T cells in the liver; adoptive transfer experiments suggested that the reduction of CD4+ T cells in the liver was attributed to a cell intrinsic property of CXCR6 deficient CD4+ T cells. Importantly, infected CXCR6 deficient mice receiving wild-type CD4+ T cells survived significantly shorter than those receiving CXCR6 deficient CD4+ T cells, demonstrating that CXCR6+CD4+ T cells promote the mortality. We conclude that infection of T. brucei leads to depletion and repopulation of liver macrophages, associated with a substantial influx of CXCR6+CD4+ T cells that mediates mortality.
  • Thumbnail Image
    Item
    IL-27 Negatively Regulates Tip-DC Development during Infection
    (American Society for Microbiology, 2021-02-16) Liu, Gongguan; Abas, Osama; Fu, Yong; Chen, Yanli; Strickland, Ashley B.; Sun, Donglei; Shi, Meiqing
    Tumor necrosis factor (TNF)/inducible nitric oxide synthase (iNOS)-producing dendritic cells (Tip-DCs) have profound impacts on host immune responses during infections. The mechanisms regulating Tip-DC development remain largely unknown. Here, using a mouse model of infection with African trypanosomes, we show that a deficiency in interleukin-27 receptor (IL-27R) signaling results in escalated intrahepatic accumulation of Ly6C-positive (Ly6C1) monocytes and their differentiation into Tip-DCs. Blocking Tip-DC development significantly ameliorates liver injury and increases the survival of infected IL-27R2/2 mice. Mechanistically, Ly6C1 monocyte differentiation into pathogenic Tip-DCs in infected IL-27R2/2 mice is driven by a CD41 T cell-interferon gamma (IFN-g) axis via cell-intrinsic IFN-g signaling. In parallel, hyperactive IFN-g signaling induces cell death of Ly6C-negative (Ly6C2) monocytes in a cell-intrinsic manner, which in turn aggravates the development of pathogenic Tip-DCs due to the loss of the negative regulation of Ly6C2 monocytes on Ly6C1 monocyte differentiation into Tip-DCs. Thus, IL-27 inhibits the dual-track exacerbation of Tip-DC development induced by a CD41 T cell–IFN-g axis. We conclude that IL-27 negatively regulates Tip-DC development by preventing the cell-intrinsic effects of IFN-g and that the regulation involves CD41 T cells and Ly6C2 monocytes. Targeting IL-27 signaling may manipulate Tip-DC development for therapeutic intervention.
  • Thumbnail Image
    Item
    VCAM1/VLA4 interaction mediates Ly6Clow monocyte recruitment to the brain in a TNFR signaling dependent manner during fungal infection
    (PLoS, 2020-02-26) Sun, Donglei; Zhang, Mingshun; Sun, Peng; Liu, Gongguan; Strickland, Ashley B.; Chen, Yanli; Fu, Yong; Yosri, Mohammed; Shi, Meiqing
    Monocytes exist in two major populations, termed Ly6C^hi and Ly6C^low monocytes. Compared to Ly6C^hi monocytes, less is known about Ly6C^low monocyte recruitment and mechanisms involved in the recruitment of this subset. Furthermore, the role of Ly6C^low monocytes during infections is largely unknown. Here, using intravital microscopy, we demonstrate that Ly6C^low monocytes are predominantly recruited to the brain vasculature following intravenous infection with Cryptococcus neoformans, a fungal pathogen causing meningoencephalitis. The recruitment depends primarily on the interaction of VCAM1 expressed on the brain endothelium with VLA4 expressed on Ly6C^low monocytes. Furthermore, TNFR signaling is essential for the recruitment through enhancing VLA4 expression on Ly6C^low monocytes. Interestingly, the recruited Ly6C^low monocytes internalized C. neoformans and carried the organism while crawling on and adhering to the luminal wall of brain vasculature and migrating to the brain parenchyma. Our study reveals a substantial recruitment of Ly6C^low monocytes to the brain and highlights important properties of this subset during infection.
  • Thumbnail Image
    Item
    Fungal dissemination is limited by liver macrophage filtration of the blood
    (Springer Nature, 2019-10-08) Sun, Donglei; Sun, Peng; Li, Hongmei; Zhang, Mingshun; Liu, Gongguan; Strickland, Ashley B.; Chen, Yanli; Fu, Yong; Xu, Juan; Yosri, Mohammed; Nan, Yuchen; Zhou, Hong; Zhang, Xiquan; Shi, Meiqing
    Fungal dissemination into the bloodstream is a critical step leading to invasive fungal infections. Here, using intravital imaging, we show that Kupffer cells (KCs) in the liver have a prominent function in the capture of circulating Cryptococcus neoformans and Candida albicans, thereby reducing fungal dissemination to target organs. Complement C3 but not C5, and complement receptor CRIg but not CR3, are involved in capture of C. neoformans. Internalization of C. neoformans by KCs is subsequently mediated by multiple receptors, including CR3, CRIg, and scavenger receptors, which work synergistically along with C5aR signaling. Following phagocytosis, the growth of C. neoformans is inhibited by KCs in an IFN-γ independent manner. Thus, the liver filters disseminating fungi from circulation via KCs, providing a mechanistic explanation for the enhanced risk of cryptococcosis among individuals with liver diseases, and suggesting a therapeutic strategy to prevent fungal dissemination through enhancing KC functions.