Fire Protection Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/2241

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    THE INFLUENCE OF WIND ON THE STRUCTURE OF INCLINED FLAMES
    (2020) Heck, Michael; Gollner, Michael J; Fire Protection Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Experiments were performed using stationary gas burners in order to characterize the flame geometry and downstream heating from stationary flames under inclined configurations under an applied forced flow. Stationary flames exhibit behavior similar to spreading wildland fires but are an ideal configuration for carefully studying fundamental wildland fire behavior characteristics that play a critical role in downstream heating, which subsequently drive fire spread. Two conditions were applied to a small-scale apparatus during experimentation, a sloped surface and forced-flow wind. The experiments were performed at multiple heat-release rates for angles from 0 to 28 degrees from the horizontal and wind speeds of 0 to 0.5 m/s.Flame geometry such as center-line flame length, flame tilt angle, and flame attachment length along the downstream surface were determined from side-view video imaging. Downstream heating was also measured through fine-wire thermocouple temperature measurements and surface total heat heat flux measurements. The measurements provided a heating profile depicting the magnitude of heating that would be applied to unburned fuels at distances in front of a spreading fire. These profiles were compared to the flame attachment observed from imaging, and to one another. While the surface heat flux cannot be scaled to larger fires, it’s relation to temperature profiles will be useful to further interpret large-scale experiments and as validation data for numerical modeling of fire behavior of the combined effects of slope and wind
  • Item
    A Generalized Model for Wall Flame Heat Flux During Upward Flame Spread on Polymers
    (2015) Korver, Kevin; Stoliarov, Stanislav; Fire Protection Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    A current model accurately predicts flame to surface heat flux during upward flame spread on PMMA based on a single input parameter, the mass loss rate. In this study, the model was generalized to predict the heat flux for a broad range of polymers by adding the heat of combustion as a second input parameter. Experimental measurements were conducted to determine mass loss rate during upward flame spread and heat of combustion for seven different polymers. Four types of heat of combustion values were compared to determine which generated the most accurate model predictions. The complete heat of combustion yielded the most accurate predictions (± 4 kW/m2 on average) in the generalized model when compared to experimental heat flux measurements collected in this study. Flame heat flux predictions from FDS direct numerical simulations were also compared to the generalized model predictions in an exploratory manner and found to be similar.