Fire Protection Engineering

Permanent URI for this communityhttp://hdl.handle.net/1903/2241

Browse

Search Results

Now showing 1 - 10 of 210
  • Thumbnail Image
    Item
    HEALTH IMPACTS OF THERMAL RUNAWAY EVENTS IN OUTDOOR LITHIUM-ION BATTERY ENERGY STORAGE SYSTEM INSTALLATIONS
    (2024) Zhao, Zelda Qijing; McAllister, Jamie; Fire Protection Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This study aimed to develop a methodology for characterizing health impacts of large-scale, outdoor, lithium-ion battery energy storage systems (BESS) thermal runaway events. A literature review was conducted to identify toxic gas yields produced during flaming and non-flaming thermal runaway, as well as mass loss rates, gas temperature, typical BESS unit capacity and dimensions, and event durations. Lithium-iron-phosphate and nickel-manganese-cobalt cell chemistries were assessed. The BESS unit thermal runaway events were modeled in Fire Dynamics Simulator with a bounding analysis for wind and ambient temperature. Concentrations were evaluated using Immediately Dangerous to Life or Health values for occupational exposure and the Protective Action Criteria for Chemicals hierarchy values (Acute Exposure Guideline Levels- Level 1, Emergency Response Planning Guidelines- Level 1, Temporary Emergency Exposure Limits- Level 1) for community exposure. Through application of the methodology, a relationship between exposure limit distance and wind speed, ambient temperature, event duration, cell chemistry, and toxic gas species can be assessed. Under the conditions modeled in this project, exposure limits were exceeded at longer distances in the non-flaming scenarios when compared to the flaming scenarios. Wind speed, ambient temperature, event duration, cell chemistry, and toxic gas species were the controlling factors for non-flaming exposure limit distances. Wind speed was the primary controlling factor for flaming exposure limit distances; however, event duration had some influence.
  • Thumbnail Image
    Item
    DEVELOPMENT AND VALIDATION OF A PYROLYSIS MODEL FOR FLEXIBLE POLYURETHANE FOAM
    (2024) Kamma, Siriwipa; Stoliarov, Stanislav I; Fire Protection Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Flexible polyurethane foam (FPUF) is a common material contained in household goods such as upholstered furniture and mattresses, which are known to significantly contribute to fire growth. An accurate prediction of fire development on FPUF containing items requires knowledge of FPUF pyrolysis and combustion properties. These properties include reaction kinetic parameters, thermodynamic parameters, and thermal transport properties. While many past studies focused on the thermal decomposing mechanism and thermodynamic properties of the reactions, the thermal transport properties have not been determined. In this study, a complete pyrolysis model of FPUF was developed by extending the thermal decomposition model from a previous study. The thermal transport properties were obtained using inverse modeling of the Controlled Atmosphere Pyrolysis Apparatus II experimental data. The complete model was validated against cone calorimetry data and found to perform in an adequate manner.
  • Thumbnail Image
    Item
    DESIGN AND PERFORMANCE EXPLORATION OF A SCALED-UP MILLIGRAM-SCALE FLAME CALORIMETER
    (2024) Cromwell Reed, Kyra; Raffan-Montoya, Fernando; Fire Protection Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Fire causes thousands of lost lives and injuries, as well as billions of dollars of property damage, each year. It is critical to understand the fire hazard associated with materials used in the built environment. One method to evaluate the flammability properties of a material is through bench- scale and milligram-scale testing with apparatus such as the Milligram-Scale Flame Calorimeter (MFC). The MFC has previously been used to test samples ranging from 30 mg – 50 mg in mass. The small samples were useful for testing materials under development or materials cost prohibitive to test at larger sizes, but presented some difficulties in testing, including in sample preparation and as inconsistency in the results of testing on inhomogeneous materials. Furthermore, the small size of the MFC caused difficulty in heater manufacturing, requiring laborious by-hand construction. The size of the MFC crucible and apparatus was increased in this work to allow testing on larger sample masses, ranging in size from 90 mg – 150 mg, and for the exploration of five alternate heater manufacturing techniques. The MFC was rebuilt with a larger heater and optimized to create the best possible test conditions for this work. Tests were conducted on five polymers: polymethyl methacrylate (PMMA), polyethylene (PE), polyvinyl chloride (PVC), and polyether ether ketone (PEEK), and on a wood-based material: oriented strand board (OSB). The tests showed general consistency when materials were tested at different sample masses and sample presentations. The results for the heat release rate and heat of combustion of the materials also aligned well with testing conducted using the previous version of the MFC apparatus. The updates to the MFC conducted in this work constitute an improvement to the versatility of the apparatus, allowing for testing on larger sample masses, but future work is needed to resolve flow and exhaust issues that caused some inconsistency in the test results and to further explore and develop alternate heater manufacturing techniques.
  • Thumbnail Image
    Item
    Experimental Characterization of the Thermal Response of Firefighter Protective Ensembles Under Non-Flaming Convective Exposure
    (2024) DiPietro, Thomas Phillip; Raffan-Montoya, Fernando; Fire Protection Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Thermal burns are one of the most serious injuries a firefighter can sustain while operating in a structure fire despite being fully covered in gear designed to protect them from thermal exposure. Extensive experimentation has been conducted into the performance of a firefighter’s protective ensemble when caught in a high radiative heat flux environment to ensure the wearer has enough time to escape to safety. High heat flux tests are beneficial in estimating safe operating times, but firefighters are also getting burned in fire environments that are thought to be routine exposures. The current study explored the thermal response of three-layer firefighter protective ensembles exposed to a majority convective, low-level heat flux in an oven. Through experimentation, the temperature of a copper calorimeter simulating skin beneath two different protective ensembles were measured while exposed to temperatures of 100°C, 150°C, 200°C, 250°C, and 300°C. The time for the copper calorimeter to reach a temperature of 55°C (the temperature a second-degree burn has the potential to occur to human skin) was recorded and compared to currently accepted thermal operating time limits for firefighters. Results show that once exposure reached above 100°C the time for a potential burn injury to occur fell below the predicted safe operational time for firefighters of 15–20 minutes when the PPE was in contact with the copper disk. The time to potential burn injury and test temperature exhibited an exponentially decaying relationship which is expected to continue as temperatures increase beyond those tested in the current study. Although consisting of different layers of material, both types of protective ensembles tested responded similarly and demonstrated no significant differences in time to potential burn injury at every temperature. Additional tests were conducted in the oven with an air gap placed below the protective ensemble as well as using the original test set up with a mostly radiative heat source to compare results and evaluate different exposures and conditions for future experimentation.
  • Thumbnail Image
    Item
    A study of Cool Diffusion Flames utilizing Ignition Delay Characteristics of N-Heptane Autoignition Simulations
    (2024) Pimple, Shubham; Sunderland, Peter; Fire Protection Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Gaining deeper insights into cool diffusion flames (CDFs) can significantly enhance engine efficiency and reduce emissions, while also filling in knowledge gaps relating to explosion initiation and the transition from smoldering to flaming fires. While detailed computational fluid dynamic (CFD) models can simulate CDFs, they require substantial computational resources due to the need for detailed chemistry and transport resolution. To circumvent these challenges, this study utilizes an alternative approach using Cantera autoignition simulations, which presumes isobaric, adiabatic conditions. The fuel, n-heptane, is analyzed through six kinetic mechanisms that capture the spectrum of low and high temperature chemistry. The observed ignition process – manifesting as single, two, or three-stage ignition – is observed to vary with initial conditions. Analysis of ignition delay times unveils the Negative Temperature Coefficient (NTC) behavior, crucial for the existence of stable cool flames. The critical transition temperatures, such as the lower and upper turnover and the crossover temperature are also identified, along with the key chemical species produced during the two-stage ignition process. The peak temperature range for stoichiometric n-heptane CDFs is determined to be between 653 and 804 K, aligning favorably with previous experimental measurements. While the first-stage ignition delay time remains nearly constant, the second-stage ignition delay time noticeably decreases as the mixture becomes richer, up to an equivalence ratio of 32. This reduction is attributed to the rapid temperature increase caused by a larger fuel quantity, which accelerates high-temperature chemical reactions. The NTC temperature range is also seen to shorten as the mixture composition gets richer. While the six chemical kinetic models examined concur about the existence of an NTC regime, variations are observed in the threshold temperatures. The insights gained from this study enhance the understanding of CDFs, setting a foundation for future research into different fuels and varying conditions.
  • Thumbnail Image
    Item
    DETECTION OF SIGNATURES FROM INTERNAL CONTAMINANT SOURCES USING INTELLIGENT ALGORITHMS
    (2023) Anthrathodiyil, Saleel; Milke, James A; Fire Protection Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Electrical odors and smoke incidents in aviation have become a pressing concern, with over half of the detector activations resulting in false alarms, leading to uncertainties for flight crews. The escalating costs of diversions and growing awareness of associated health risks underscore the need for more reliable detection and discrimination from false alarms. This study harnesses advanced multi-sensor array technologies, intelligent algorithms, and Metal Oxide Sensors (MOS) sensors equipped with AI capabilities to detect and analyze signatures from candidate internal contaminant sources located in the cockpit. Printed circuit boards from avionics, aviation cables of different insulation, and external contaminant sources were put to failure testing to analyze the early fire signatures. These signatures were subsequently assessed using clustering algorithms and multivariate analysis to pinpoint distinct markers. Comprehensive gas analysis and light obscuration measurements further characterized the environment. Experiments were executed at both the University of Maryland and the Federal Aviation Administration (FAA) tech center, replicating diverse conditions, including an altitude simulation of 8000 ft. The focus was on the capability to distinguish between samples during the smoldering phase, leveraging a multivariate approach and gas analysis. The study also incorporated Aspirating Smoke Detection (ASD) to characterize the responses during large-scale testing. The findings pave the way for identifying and integrating innovative technologies, achieving accurate detection of early-stage signatures from internal contaminants during potential aircraft smoke events.
  • Thumbnail Image
    Item
    Pyrolysis Model Development for a Multilayer Floor Covering
    (MDPI, 2015-09-14) McKinnon, Mark B.; Stoliarov, Stanislav I.
    Comprehensive pyrolysis models that are integral to computational fire codes have improved significantly over the past decade as the demand for improved predictive capabilities has increased. High fidelity pyrolysis models may improve the design of engineered materials for better fire response, the design of the built environment, and may be used in forensic investigations of fire events. A major limitation to widespread use of comprehensive pyrolysis models is the large number of parameters required to fully define a material and the lack of effective methodologies for measurement of these parameters, especially for complex materials. The work presented here details a methodology used to characterize the pyrolysis of a low-pile carpet tile, an engineered composite material that is common in commercial and institutional occupancies. The studied material includes three distinct layers of varying composition and physical structure. The methodology utilized a comprehensive pyrolysis model (ThermaKin) to conduct inverse analyses on data collected through several experimental techniques. Each layer of the composite was individually parameterized to identify its contribution to the overall response of the composite. The set of properties measured to define the carpet composite were validated against mass loss rate curves collected at conditions outside the range of calibration conditions to demonstrate the predictive capabilities of the model. The mean error between the predicted curve and the mean experimental mass loss rate curve was calculated as approximately 20% on average for heat fluxes ranging from 30 to 70 kW·m−2, which is within the mean experimental uncertainty.
  • Thumbnail Image
    Item
    Development of a Semiglobal Reaction Mechanism for the Thermal Decomposition of a Polymer Containing Reactive Flame Retardants: Application to Glass-Fiber-Reinforced Polybutylene Terephthalate Blended with Aluminum Diethyl Phosphinate and Melamine Polyphosphate
    (MDPI, 2018-10-12) Ding, Yan; Stoliarov, Stanislav I.; Kraemer, Roland H.
    This work details a methodology for parameterization of the kinetics and thermodynamics of the thermal decomposition of polymers blended with reactive additives. This methodology employs Thermogravimetric Analysis, Differential Scanning Calorimetry, Microscale Combustion Calorimetry, and inverse numerical modeling of these experiments. Blends of glass-fiber-reinforced polybutylene terephthalate (PBT) with aluminum diethyl phosphinate and melamine polyphosphate were used to demonstrate this methodology. These additives represent a potent solution for imparting flame retardancy to PBT. The resulting lumped-species reaction model consisted of a set of first- and second-order (two-component) reactions that defined the rate of gaseous pyrolyzate production. The heats of reaction, heat capacities of the condensed-phase reactants and products, and heats of combustion of the gaseous products were also determined. The model was shown to reproduce all aforementioned experiments with a high degree of detail. The model also captured changes in the material behavior with changes in the additive concentrations. Second-order reactions between the material constituents were found to be necessary to reproduce these changes successfully. The development of such models is an essential milestone toward the intelligent design of flame retardant materials and solid fuels.
  • Thumbnail Image
    Item
    Viability of Various Sources to Ignite A2L Refrigerants
    (MDPI, 2020-12-28) Kim, Dennis K.; Sunderland, Peter B.
    Environmental considerations are motivating the adoption of low global warming potential refrigerants. Most of these are mildly flammable, i.e., A2L. Their susceptibility to ignition from various ignition sources is poorly understood, particularly for the stoichiometric and quiescent mixtures that are emphasized here. The viability of fifteen residential ignition sources to ignite four A2L refrigerants is considered. Tests are performed in a windowed chamber with a volume of 26 L. The refrigerants are R-32 (difluoromethane); R-452B (67% R-32, 26% R-1234yf, and 7% pentafluoroethane); R-1234yf (2,3,3,3-tetrafluoropropene); and R-1234ze (1,3,3,3-tetrafluoropropene). Two types of ignition sources are confirmed here to be viable: a resistively heated wire at 740 °C and open flames. When the refrigerant concentration was increased slowly, candle flames and butane flames extinguished before initiating any large deflagrations. Eleven other sources were not viable: a smoldering cigarette, a butane lighter, friction sparks, a plug and receptacle, a light switch, a hand mixer, a cordless drill, a bread toaster, a hair dryer, a hot plate, and a space heater. The difficulty to ignite these refrigerants in air is attributed to their long quenching distances (up to 25 mm). Under some conditions the refrigerants were observed to act as flame suppressants.
  • Thumbnail Image
    Item
    Polyisocyanurate Foam Pyrolysis and Flame Spread Modeling
    (MDPI, 2021-04-13) Chaudhari, Dushyant M.; Stoliarov, Stanislav I.; Beach, Mark W.; Suryadevara, Kali A.
    Polyisocyanurate (PIR) foam is a robust thermal insulation material utilized widely in the modern construction. In this work, the flammability of one representative example of this material was studied systematically using experiments and modeling. The thermal decomposition of this material was analyzed through thermogravimetric analysis, differential scanning calorimetry, and microscale combustion calorimetry. The thermal transport properties of the pyrolyzing foam were evaluated using Controlled Atmosphere Pyrolysis Apparatus II experiments. Cone calorimetry tests were also carried out on the foam samples to quantify the contribution of the blowing agent (contained within the foam) to its flammability, which was found to be significant. A complete pyrolysis property set was developed and was shown to accurately predict the results of all aforementioned measurements. The foam was also subjected to full-scale flame spread tests, similar to the Single Burning Item test. A previously developed modeling approach based on a coupling between detailed pyrolysis simulations and a spatially-resolved relationship between the total heat release rate and heat feedback from the flame, derived from the experiments on a different material in the same experimental setup, was found to successfully predict the evolution of the heat release rate measured in the full-scale tests on the PIR foam.