Institute for Systems Research
Permanent URI for this communityhttp://hdl.handle.net/1903/4375
Browse
Search Results
Item Comparison of Run-to-Run Control Methods in Semiconductor Manufacturing Processes(2000) Zhang, Chang; Deng, Hao; Baras, John S.; Baras, John S.; ISRRun-to Run (RtR) control plays an important role in semiconductor manufacturing.In this paper, RtR control methods are generalized. The set-valued RtR controllers with ellipsoidapproximation are compared with other RtR controllers bysimulation according to the following criteria: A good RtR controller should be able to compensate for variousdisturbances, such as process drifts, process shifts (step disturbance)and model errors; moreover, it should beable to deal with limitations, bounds, cost requirement, multipletargets and time delays that are often encountered in realprocesses.
Preliminary results show the good performance of the set-valued RtRcontroller. Furthermore, this paper shows that it is insufficient to uselinear models to approximate nonlinear processes and it is necessary to developnonlinear model based RtR controllers.
Item The Set-Valued Run-to-Run Controller with Ellipsoid Approximation(2000) Zhang, Chang; Baras, John S.; Baras, John S.; ISRIn order to successfully apply Run-to-Run (RtR) control or real time control ina semiconductor process, it is very important to estimate the processmodel. Traditional semiconductor process control methods neglect theimportance of robustness due to the estimation methods they use.A new approach, namely the set-valued RtR controller with ellipsoidapproximation, is proposed to estimate the process model from acompletely different point of view. Because the set-valued RtRcontroller identifies the process model in the feasible parameter setwhich is insensitive to noises, the controller is robust to theenvironment noises.Ellipsoid approximation can significantly reduce the computation load for the set-valued method.
In this paper, the Modified Optimal Volume Ellipsoid (MOVE) algorithm is used toestimate the process model in each run. Designof the corresponding controller and parameter selection of the controller are introduced.Simulation results showed that the controller is robust toenvironment noises and model errors.
Item Real-Time Growth Rate Metrology for a Tungsten CVD Process by Acoustic Sensing(2000) Henn-Lecordier, Laurent; Kidder, John N., Jr.; Rubloff, Gary W.; Gogol, C. A.; Wajid, A.; ISRAn acoustic sensor, the Leybold Inficon ComposerTM, was implemented downstream to a production-scale tungsten chemical vapor deposition (CVD) cluster tool for in-situ process sensing. Process gases were sampled at the outlet of the reactor chamber and compressed with a turbo-molecular pump and mechanical pump from the sub-Torr process pressure regime to above 50 Torr as required for gas sound velocity measurements in the acoustic cavity. The high molecular weight gas WF6 mixed with H2 provides a substantial molecular weight contrast so that the acoustic sensing method appears especially sensitive to WF6 concentration.By monitoring the resonant frequency of exhaust process gases, the depletion of WF6 resulting from the reduction by H2 was readily observed in the 0.5 Torr process for wafer temperatures ranging from 300 to 350 C. Despite WF6 depletion rates as low as 3-5%, in-situ wafer-state metrology was achieved with an error less than 6% over 17 processed wafers.
This in-situ metrology capability combined with accurate sensor response modeling suggests an effective approach for acoustic process sensing in order to achieve run-to-run process control of the deposited tungsten film thickness.
Item Run-to-Run Control Methods Based on the DHOBE Algorithm(1999) Deng, Hao; Zhang, Chang; Baras, John S.; ISR; CSHCNMany run-to-run (RtR) control methods have been developed in recentyears. Two particular set-valued RtR control schemes based on the Dasgupta-Huang OptimalBounded Ellipsoid (DHOBE) algorithm are introduced. Compared to other RtR control schemes, the methods in this paper only need to know the bound of the noises, and are easyto implement.The DHOBE algorithm, for eachrecursion, returns an outer bounding ellipsoid of the estimated parameters. If the center of the ellipsoid each time istaken as the model coefficients, the explicit model update isimplemented which leads to a model-reference method. If we choose theworst-case point which maximizes the cost function in the set, then wecan apply the set-valued worst case approach. These two methods were compared with two other main RtRcontrol schemes: the Exponentially Weighted Moving Average (EWMA) methodand the Optimizing Adaptive Quality Controller (OAQC) method. Simulation results showed the superior performance of the RtRcontrollers based on the DHOBE algorithm. Furthermore this paper showedthat it is necessary to applynonlinear models to compensate for severe nonlinear processes.
Item Locators and Sensors for Automated Coordinate Checking Fixtures(1997) Wang, Yu; Nagarkar, Sanjeev; ISRThis article proposes a systematic method for the optimal design of sensor locations for an automated Coordinate Checking Fixture (CCF). The fixture can be employed for making at-machine assessments of the dimensional accuracy of manufactured components. Coordinate measurements obtained by the sensors built into the fixture can be utilized in estimating geometric parameters of a manufactured part. Two important issues that arise in the design of a CCF are the optimal number of sensors to be used and the best locations for each sensor. The proposed method uses statistical analyses of the Fisher information matrix and the prediction matrix to obtain an optimal set of sensors from an initial candidate set. Sensors are placed at locations that maximize the determinant of the Fisher information matrix for best parameter estimation, while the sensor of the least contribution to the measurement objective is iteratively eliminated. With the benefit of physical insight, the design procedure results in a balanced decision for the ultimate placement of sensors. The developed method also addresses the problem of selection of part locators for part localization in the CCF. Examples are provided for illustration of the developed procedure for automotive space frame extrusion parts.Item A Comparative Machinability Study of Dental Materials(1997) Zhang, G.; Rekow, D.; Thompson, V.; ISRThis paper presents results obtained from a comparative machinability study of newly invented ceramic materials for dental restorations. With the microstructure being the dominant factor on crack initiation and propagation during the fabrication process, the objective of this study is to identify the relationship between the microstructural characteristics and damage created during machining which could compromise the reliability of ceramic-made dental restorations. Glass ceramic material with tailored characteristics of microstructure is used in this study. The machining platform is milling operations where proper tool geometry and machining parameters are selected. Empirical models to correlate the cutting force and degradation of flexure strength with machining parameters are established. The aims of the research are to reduce surface cracking to yield improved surface finish (smooth < 2 mm) and to lessen strength degradation after machining. The study consists of four steps, including characterization of microstructure, identification of machining parameters, on-line monitoring of the machining operations, and evaluation of flexure strength degradation. Contributions of this study are the establishment of a procedure for carrying out the machinability assessment, and the establishment of empirical models relating the cutting force and fracture strength degradation to the cutting conditions.Item Hardness Assessment of Human Enamel(1997) Zhang, G.; Ng, S.J.; Le, Dung T.; Young, D.; ISRThis paper presents results from investigating indentation impressions on human enamel under micro-hardness tests. The experiments of hardness testing were performed on a microhardness indentation machine under different loading conditions. Images of indentation impressions were obtained using an environmental scanning electron microscope. Geometrical shapes of hardness indentations were visualized in three-dimentional space using computer graphics. Quantitative information was obtained through atomic force measurements to characterize ﲰile-up , ﲳink-in , and elastic recovery of enamel. Special efforts have been made to study the microstructual effect of the calcified rods orientations on the fracture patterns formed during the hardness tests. Significant finding include that the occlusal surface demonstrates much stronger resistance to the indentation force than does the buccal surface and shows 40% elastic recovery after indentation. A new formula to determine hardness value has been proposed. By incorporating the reversible deformation into the evaluation, a normalized hardness measurement can be made to form a basis for comparison and other investigations where hardness has its unique role to play.Item Microstructural Effects on the Machining Performance of Dental Ceramics(1997) Le, Dung T.; Qi, L.; Zhang, G.; ISRConstraints of mechanical, thermal, and chemical properties are making ceramics the material choice for industrial and dental applications. The quality of a machined surface of ceramics is fundamentally dependent on the response of the material to the machining process. This paper presents a combined analytical and experimental study with focus on optimizing the machining performance of dental ceramics -- DICOR/MGC -- with three distinguished microstructures. The study starts from analyzing the microstructural characteristics to searching for the machining conditions that provide satisfactory performance in terms of acceptable flexural strength. Evidence gained from the cutting force measurements and evaluation of fracture strength degradation indicates that the control of micro-scale fracture formed on the machined surface, with microstructural characteristics being considered, is the key factor which dominates the machining performance.Item Assessment of Non-Linear Dynamics of Material Removal on Surface Integrity(1997) Zhang, G.; Ng, S.J.; Le, Dung T.; ISRIn this chapter, we present our research on the study of non- linear dynamics observed during the machining of ceramic materials. We will focus on both innovation in machining technology and development of non-destructive evaluation methods to assess machining performance. Three aspects of our work are presented in the following sections. They are, 1) Submerged Precision Machining, and 2) Scanning Electron Microscopy Analysis. Aspect 1 relates to an innovative approach to machining, while aspects 2 relates to evaluation methodologies for surface characterization. These methods and techniques have been developed to achieve cost-efficient machining as well as high-quality surface finish in ceramic material.Item Characterization of Indentation Impressions on Human Enamel For Hardness Measurement(1997) Zhang, G.; Le, Dung T.; Tucker, S.R.; Ng, S.J.; ISRThis paper presents results from investigating indentation impressions on human enamel under micro-hardness tests. The experiments of hardness testing were performed on a microhardness indentation machine under different loading conditions. Images of indentation impressions were obtained using an environmental scanning electron microscope. Geometrical shapes of hardness indentations were visualized in three-dimensional space using computer graphics. Quantitative information was obtained through atomic force measurements to characterize "pile-up", "sink-in", and elastic recovery of enamel. Special efforts have been made to study the microstrucutual effect of the calcified rods orientations on the fracture patterns formed during the hardness tests. Significant findings include that the occlusal surface demonstrates much stronger resistance to the indentation force than does the buccal surface and shows 40% elastic recovery after indentation. A new formula to determine hardness value has been proposed. By incorporating the reversible deformation into the evluation, a normalized hardness measurement can be made to form a basis for comparison and other investigations where hardness has its unique role to play.
- «
- 1 (current)
- 2
- 3
- »